A culturally relevant foods and nutrition curriculum versus a culturally limited foods and nutrition curriculum
Issue Date
1972Keywords
University of Arizona. -- Cooperative Extension Service. -- Expanded Nutrition Education Program.Nutrition -- Study and teaching.
Mexican Americans -- Nutrition.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Type
textThesis-Reproduction (electronic)
Degree Name
M.S.Degree Level
mastersDegree Program
Home EconomicsGraduate College
Degree Grantor
University of ArizonaCollections
Related items
Showing items related by title, author, creator and subject.
-
Mineral Content of Arizona-Grown Alfalfa: With Particular Reference to Minor ElementsBreazeale, E. L.; McGeorge, W. T. (Agricultural Experiment Station, University of Arizona (Tucson, AZ), 1956-02)
-
The Environmental Impact of the Athlete's Plate Nutrition Education ToolReguant-Closa, Alba; Roesch, Andreas; Lansche, Jens; Nemecek, Thomas; Lohman, Timothy G; Meyer, Nanna L; Univ Arizona (MDPI, 2020-08-18)Periodized nutrition is necessary to optimize training and enhance performance through the season. The Athlete's Plate (AP) is a nutrition education tool developed to teach athletes how to design their plates depending on training load (e.g., volume × intensity), from easy (E), moderate (M) to hard (H). The AP was validated, confirming its recommendations according to international sports nutrition guidelines. However, the AP had significantly higher protein content than recommended (up to 2.9 ± 0.5 g·kg-1·d-1; p < 0.001 for H male). The aim of this study was to quantify the environmental impact (EnvI) of the AP and to evaluate the influence of meal type, training load, sex and registered dietitian (RD). The nutritional contents of 216 APs created by 12 sport RDs were evaluated using Computrition Software (Hospitality Suite, v. 18.1, Chatsworth, CA, USA). The EnvI of the AP was analyzed by life cycle assessment (LCA) expressed by the total amount of food on the AP, kg, and kcal, according to the Swiss Agricultural Life Cycle Assessment (SALCA) methodology. Higher EnvI is directly associated with higher training load when the total amount of food on the plate is considered for E (5.7 ± 2.9 kg CO2 eq/day); M (6.4 ± 1.5 kg CO2 eq/day); and H (8.0 ± 2.1 kg CO2 eq/day). Global warming potential, exergy and eutrophication are driven by animal protein and mainly beef, while ecotoxicity is influenced by vegetable content on the AP. The EnvI is influenced by the amount of food, training load and sex. This study is the first to report the degree of EnvI in sports nutrition. These results not only raise the need for sustainability education in sports nutrition in general, but also the urgency to modify the AP nutrition education tool to ensure sports nutrition recommendations are met, while not compromising the environment.
-
Anti-quality components in forage: Overview, significance, and economic impactAllen, V. G.; Segarra, E. (Society for Range Management, 2001-07-01)Although recognized in importance from the dawn of history, forages have too often been underestimated and undervalued perhaps in part because animal performance has frequently failed to reflect apparent forage quality. Anti-quality components, diverse impediments to quality, have evolved as structural components and as secondary metabolites. They include mineral imbalances or can be related to the presence of insects and diseases. Animal behavior and adaptation are increasingly recognized as important aspects of anti-quality factors. An anti-quality component may reduce dry matter intake, dry matter digestibility, or result in nutritional imbalances in animals. They can act as a direct poison compromising vital systems, result in abnormal reproduction, endocrine function, and genetic aberrations, trigger undesirable behavior responses, or suppress immune function leading to increased morbidity and mortality. The economic impact of anti-quality factors on individual herds can be devastating but definable. Broadscale economic impacts of anti-quality factors are far more difficult to estimate. A loss of 0.22 kg/day in potential gain of stocker cattle due to anti-quality factors during a 166-day grazing season translates into a loss of about 55/steer at 1.45/kg or over 2 billion annually when applied to the U.S stocker cattle. Economic losses to tall fescue (Festuca arundinacea Schreb.) toxicosis in the U.S. beef industry are probably underestimated at 600 million annually. Reproductive and death losses of livestock due to poisonous plants have been estimated at 340 million in the 17 western states alone. These examples of economic losses due to anti-quality factors may be upper bounds of actual losses but even if a small proportion of the expected losses were eliminated through research, the potential payoff would be extremely high.