• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Comprehensive Analysis of Polo-like Kinase 4's Regulation and Role in Centriole Biogenesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13235_sip1_m.pdf
    Size:
    3.650Mb
    Format:
    PDF
    Download
    Author
    Klebba, Joseph Earl
    Issue Date
    2014
    Keywords
    Cell Biology & Anatomy
    Advisor
    Rogers, Gregory C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Plk4 has been termed a `suicide kinase' because it promotes its own destruction to regulate protein levels. We identified numerous autophosphorylated residues within a region of Plk4 called the Downstream regulatory element (DRE). We find that phosphorylation of a single residue is sufficient for Slimb recruitment and phosphorylation of the surrounding residues builds a high affinity Slimb-binding site. These autophosphorylation events are dependent on Plk4 homodimerization, although the domains that mediate this dimerization are unknown. We show that Plk4 homodimerization is mediated by interactions between the PB1-PB2 cassette. We find that like all Polo kinases, Plk4 encodes a mechanism of kinase autoinhibition. Unlike other Polo kinases, which rely on external inputs for relief of inhibition, Plk4 is self-sufficient in relieving kinase inhibition. This relief of autoinhibition is regulated by PB3 of Plk4 and is dependent on homodimerization, thereby making homodimerization a necessary step in formation of the Slimb phosphodegron on Plk4. Polo Boxes are known as multifunctional domains, and the Polo Boxes of Plk4 are no different. We identified numerous Slimb-mediated ubiquitination sites on PB1 as well as PB2. Furthermore, the PB1-PB2 cassette mediates the interaction between Plk4 and the N-terminus of Asterless. In Drosophila cells, Plk4 requires Asterless for centriolar localization and Asterless overexpression drives centriole amplification in a Plk4 dependent manner. This is a fascinating result as endogenous Plk4 protein levels are undetectable in S2 cells, making it hard to envision a scenario where overexpression of Asterless could shuttle a non-existent Plk4 population to the centriole to initiate duplication. We found that in addition to shuttling Plk4 to the centriole, Asterless stabilizes Plk4, likely protecting Plk4 at the centriole to allow it to `license' the centriole for duplication. Moreover, we show that Asterless encodes two distinct Plk4 binding sites: the previously described N-terminal binding site as well as a novel C-terminal binding site. We found that the interaction between the C-terminal of Asterless and Plk4 is necessary for centriole duplication while the interaction between the N-terminal of Asterless and Plk4 is expendable. Together these findings provide significant insight into Plk4 biology and the mechanisms which limit its activity.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cell Biology & Anatomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.