• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Data-Driven Approach for System Approximation and Set Point Optimization, with a Focus in HVAC Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13234_sip1_m.pdf
    Size:
    1.474Mb
    Format:
    PDF
    Download
    Author
    Qin, Xiao
    Issue Date
    2014
    Keywords
    Data-driven
    HVAC
    Optimization
    System Modeling
    Electrical & Computer Engineering
    Control
    Advisor
    Lysecky, Susan
    Sprinkle, Jonathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Dynamically determining input signals to a complex system, to increase performance and/or reduce cost, is a difficult task unless users are provided with feedback on the consequences of different input decisions. For example, users self-determine the set point schedule (i.e. temperature thresholds) of their HVAC system, without an ability to predict cost--they select only comfort. Users are unable to optimize the set point schedule with respect to cost because the cost feedback is provided at billing-cycle intervals. To provide rapid feedback (such as expected monthly/daily cost), mechanisms for system monitoring, data-driven modeling, simulation, and optimization are needed. Techniques from the literature require in-depth knowledge in the domain, and/or significant investment in infrastructure or equipment to measure state variables, making these solutions difficult to implement or to scale down in cost. This work introduces methods to approximate complex system behavior prediction and optimization, based on dynamic data obtained from inexpensive sensors. Unlike many existing approaches, we do not extract an exact model to capture every detail of the system; rather, we develop an approximated model with key predictive characteristics. Such a model makes estimation and prediction available to users who can then make informed decisions; alternatively, these estimates are made available as an input to an optimization tool to automatically provide pareto-optimized set points. Moreover, the approximation nature of this model makes the determination of the prediction and optimization parameters computationally inexpensive, adaptive to system or environment change, and suitable for embedded system implementation. Effectiveness of these methods is first demonstrated on an HVAC system methodology, and then extended to a variety of complex system applications.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.