• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Biomechanics in the Idiopathic Onset of Unilateral Vocal Fold Paralysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13245_sip1_m.pdf
    Size:
    5.748Mb
    Format:
    PDF
    Download
    Author
    Williams, Megan J.
    Issue Date
    2014
    Keywords
    vocal cord paralysis
    Biomedical Engineering
    recurrent laryngeal nerve
    Advisor
    Vande Geest, Jonathan
    Committee Chair
    Vande Geest, Jonathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The vocal folds are important for protection of the airway during swallowing, the regulation of breathing and for voice production. Unilateral vocal fold paralysis (UVP) is caused by damage to the recurrent laryngeal nerve (RLN). Although surgery is most often linked to onset of UVP, the cause remains unknown in 12-42% of those with this disorder [1, 2]. At the level of the aortic arch the RLN branches from the vagus nerve and courses around the arch to ascend back toward the larynx. I hypothesize that an aneurysm of the aorta or alternatively changes in aortic arch compliance could impose increased stress and strain on the RLN where it is adjacent to the aorta resulting in impaired nerve function. The purpose of this research is to develop a computational model based on the biomechanical properties of the left RLN. This model is important for formulating predictions of the typical ranges of stress and strain responses of RLN tissue to forces imposed by surrounding structures (aortic arch). These predictions may be important for future investigations using an animal model to determine the amount of stretch necessary to cause onset of UVP. The first aim of this work was to identify differences in the biomechanical properties in the RLN of piglets between its location within the neck and the portion of the left RLN within the thorax, including the aortic arch region. The distal right RLN segment showed higher maximum tangential modulus (MTM) than the left. With the left nerve the proximal segment (aortic arch region) exhibited higher values of MTM and the stiffness parameter β than the distal segment. This increased stiffness of the proximal region may be in response to the pulsatile forces near the region of the aortic arch. The second aim of this work was to identify difference in the biomechanical properties in adolescent and piglet RLN specimens, between age and between the proximal and distal segments. Additionally the collagen structure of the RLN was imaged with two-photon microscopy to compare the microstructure with the biomechanical response of the RLN tissue. The tangential modulus (TM) and full width half maximum of the collagen fiber distribution (FWHM) was larger in the proximal segments than the distal segments. The strain energy and stiffness parameter α were larger in the piglet than the adolescent pigs while the stiffness parameter β was larger in the adolescent pigs. The purpose of the third aim was to use the material constants from the second aim to create a parametric computational model of the left RLN and the aortic arch. Results indicated that the parameters with the greatest sensitivity to left RLN maximum principal stress and strain are the material properties of the aortic arch. The maximum value of strain found in the RLN region of interest was 16.1%, which may indicate that some combination of aortic arch and RLN properties can elicit damage in the RLN.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.