• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design and Synthesis of PACAP Based Glycopeptide Analogs; Effects of Glycosylation on Activity and Blood-Brain Barrier Penetration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13323_sip1_m.pdf
    Size:
    18.56Mb
    Format:
    PDF
    Download
    Author
    Anglin, Bobbi Lynn
    Issue Date
    2014
    Keywords
    neuroprotection
    PAC1R
    PACAP
    Parkinson's disease
    Pharmaceutical Sciences
    glycopeptide
    Advisor
    Polt, Robin L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The incidence of neurodegenerative disorders like Parkinson’s disease (PD) and Alzheimer’s disease (AD) are increasing as the population ages. Slowing the rate of neurological decline can have a huge impact on health care costs and quality of life for both the patients and those caring for them. Pituitary adenylate cyclase activating peptide (PACAP) is a Secretin family peptide that activates the PAC1, VPAC1 and VPAC2 receptors and is associated with neuroprotection and neuronal differentiation. PACAP administration protects neurons against toxic, hypoxic, traumatic or inflammatory insults. The receptors of the Secretin family are unique due to the large extracellular domain (ECD) necessary to bind the endogenous ligand prior to receptor activation. The Secretin family ligands are all peptides, this family of receptors being responsible for regulating and maintaining homeostasis within the organism. PACAP is a pleiotropic peptide acting both centrally and peripherally. Exogenously administered peptide is rapidly metabolized. For neuroprotective effects, PACAP must cross the blood brain barrier (BBB). Enhancing the transport across the BBB has been accomplished through peptide glycosylation. Here we design and synthesize a series of glycosylated PACAP agonists and antagonists to evaluate them for receptor activity and ability to cross the BBB. A homology model was constructed of the full length PAC1R based on the transmembrane portion of both the mu opioid receptor and the corticotropin releasing factor-1 receptor combined with the NMR derived solution structure of the PAC1R ECD bound with the receptor antagonist, PACAP6-38. Using this model to guide us, the decision was made to place the glycosylated residue at the C-terminus of the peptide. A series of PACAP based glycopeptide agonists and antagonists were prepared using solid phase peptide synthesis (SPPS). Synthesis of PACAP analogs is complicated by the inclusion of two sites of aspartimide formation, the D3-G4 and D8-S9 sequences. Initial SPPS trials resulted in very little desired peptide formation. Reagent adjustments and using an amino-group protection strategy improved peptide yield. Methionine sulfoxide formation occurs in PACAP analogs. Substitution of methionine with leucine avoids this oxidation issue. An initial screen of PACAP and two glycosylated analogs using PC12 cells for PAC1R activation indicated that all three promoted neurite-like process outgrowths indicating PAC1R activation. The diluent treated cells did not exhibit this morphological change. Quantification of cells for assessing antiproliferative effects was not performed. More PC12 experiments should be performed to assess antiproliferative action and to screen additional glycosylated PACAP analogs for PAC1R activation. One of the glycosylated PACAP analogs was detected in CSF after i.p. administration in a mouse. Microdialysis samples obtained in vivo were analyzed by a newly developed LC/MS² technique and found to contain the administered glycosylated PACAP still intact, demonstrating that the glycopeptide crosses the BBB. Additional experiments using other glycosylated PACAP analogs are planned.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmaceutical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.