• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Efficient Error Analysis Assessment in Optical Design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13315_sip1_m.pdf
    Size:
    2.785Mb
    Format:
    PDF
    Download
    Author
    Herman, Eric
    Issue Date
    2014
    Keywords
    lens design
    optomechanical
    tolerance
    Optical Sciences
    aberrations
    Advisor
    Sasián, José
    Youngworth, Richard N.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    When designing a lens, cost and manufacturing concerns are extremely challenging, especially with radical optical designs. The tolerance process is the bridge between design and manufacturing. Three techniques which improve the interaction between lens design and engineers are successfully shown in this thesis along with implementation of these techniques. First, a method to accurately model optomechanical components within lens design is developed and implemented. Yield improvements are shown to increase by approximately 3% by modeling optomechanical components. Second, a method utilizing aberration theory is applied to discover potential tolerance sensitivity of an optical system through the design process. The use of aberration theory gives an engineer ways to compensate for errors. Third, a method using tolerance grade mapping is applied to error values of an optical system. This mapping creates a simplified comparison method between individual tolerances and lens designs.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.