• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An Evaluation Framework for Adaptive User Interface

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13359_sip1_m.pdf
    Size:
    730.5Kb
    Format:
    PDF
    Download
    Author
    Noriega Atala, Enrique
    Issue Date
    2014
    Keywords
    automatic speech recognition
    expected utility
    machine learning
    rational user interfaces
    Computer Science
    adaptive user interfaces
    Advisor
    Cohen, Paul R.
    Morrison, Clayton T.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    With the rise of powerful mobile devices and the broad availability of computing power, Automatic Speech Recognition is becoming ubiquitous. A flawless ASR system is still far from existence. Because of this, interactive applications that make use of ASR technology not always recognize speech perfectly, when not, the user must be engaged to repair the transcriptions. We explore a rational user interface that uses of machine learning models to make its best effort in presenting the best repair strategy available to reduce the time in spent the interaction between the user and the system as much as possible. A study is conducted to determine how different candidate policies perform and results are analyzed. After the analysis, the methodology is generalized in terms of a decision theoretical framework that can be used to evaluate the performance of other rational user interfaces that try to optimize an expected cost or utility.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Computer Science
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.