• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Measuring the Universe with High-Precision Large-Scale Structure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13389_sip1_m.pdf
    Size:
    2.442Mb
    Format:
    PDF
    Download
    Author
    Mehta, Kushal Tushar
    Issue Date
    2014
    Keywords
    Large-scale structure
    Astronomy
    Cosmology
    Advisor
    Eisenstein, Daniel J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Baryon acoustic oscillations (BAOs) are used to obtain precision measurements of cosmological parameters from large-scale surveys. While robust against most systematics, there are certain theoretical uncertainties that can affect BAO and galaxy clustering measurements. In this thesis I use data from the Sloan Digital Sky Survey (SDSS) to measure cosmological parameters and use N-body and smoothed-particle hydrodynamic (SPH) simulations to measure the effect of theoretical uncertainties by using halo occupation distributions (HODs). I investigate the effect of galaxy bias on BAO measurements by creating mock galaxy catalogs from large N -body simulations at z = 1. I find that there is no additional shift in the acoustic scale (0.10% ± 0.10%) for the less biased HODs (b < 3) and a mild shift (0.79% ± 0.31%) for the highly biased HODs (b > 3). I present the methodology and implementation of the simple one-step reconstruction technique introduced by Eisenstein et al. (2007) to biased tracers in N-body simulation. Reconstruction reduces the errorbars on the acoustic scale measurement by a factor of 1.5 - 2, and removes any additional shift due to galaxy bias for all HODs (0.07% ± 0.15%). Padmanabhan et al. (2012) and Xu et al. (2012) use this reconstruction technique in the SDSS DR7 data to measure Dᵥ(z = 0.35)(rᶠⁱᵈs/rs) = 1356 ± 25 Mpc. Here I use this measurement in combination with measurements from the cosmic microwave background and the supernovae legacy survey to measure various cosmological parameters. I find the data consistent with the ΛCDM Universe with a flat geometry. In particular, I measure H₀ = 69.8 ± 1.2 km/s/Mpc, w = 0.97 ± 0.17, Ωk = -0.004 ± 0.005 in the ΛCDM, wCDM, and oCDM models respectively. Next, I measure the effect of large-scale (5 Mpc) halo environment density on the HOD by using an SPH simulation at z = 0, 0.35, 0.5, 0.75, 1.0. I do not find any significant dependence of the HOD on the halo environment density for different galaxy mass thresholds, red and blue galaxies, and at different redshifts. I use the MultiDark N-body simualtion to measure the possible effect of environment density on the galaxy correlation function ℰ(r). I find that environment density enhances ℰ(r) by ∽ 3% at scales of 1 – 20h⁻¹Mpc at z = 0 and up to ∽ 12% at 0.3h⁻¹Mpc and ∽ 8% at 1 - 4h⁻¹Mpc for z = 1.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.