• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Untangling Intercellular Communication Using Optical Manipulation in 3D Models of Tumor Microenvironment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13409_sip1_m.pdf
    Size:
    8.850Mb
    Format:
    PDF
    Download
    Author
    Orsinger, Gabriel V.
    Issue Date
    2014
    Keywords
    cell signaling
    liposomes
    optical trap
    plasmon resonance
    tumor microenvironment
    Biomedical Engineering
    calcium
    Advisor
    Romanowski, Marek
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 18-Jul-2015
    Abstract
    The tumor microenvironment is a tangled web of multiple cell types, extracellular matrix components, and a multitude of cell signaling pathways frequently contribute to poor outcomes, which make cancer the second leading killer in the United States. A better understanding of how these constituents interact will inevitably facilitate development of novel cancer therapeutics and diagnostics. To advance scientific discovery towards this goal, innovative experimental techniques are required. In this dissertation, new research methods for probing cell communication at a single to multi cell level within 3D models of the tumor microenvironment are presented. Optical trapping, composite nanocapsules (i.e., gold-coated liposomes), and 3D cell culture models were the foundation for the development of these research tools. The first aim of this dissertation was to optimize our ability to optically manipulate gold-coated liposomes for the purpose of delivering molecular content to cells. The second aim was to apply optical manipulation of gold-coated liposomes to quantitatively deliver signaling molecules into a single cell to activate communication. The third aim was to develop a 3D model of the tumor microenvironment and demonstrate cell communication within this physiologically accurate architecture. The basis for this work was gold-coated liposomes' strong plasmon resonance with visible to near infrared (NIR) wavelengths of light, which enabled photo-thermal conversion and optical trapping. To identify preferred conditions for optical manipulation of gold-coated liposomes for delivering content into cells, gold-coated liposomes made with different dielectric properties were optically trapped under various laser modulation schemes and thoroughly characterized, enabled by high speed (kHz) imaging. Application of this technique was realized by precise delivery of molecular agents into a single cell (i.e., optical injection). As a demonstration of optical injection, the NIR trapping beam was utilized to propel gold-coated liposomes encapsulating inositol trisphosphate (IP3) into a single cell to initiate calcium (Ca²⁺) signaling. In another method for intracellular delivery, cells were preloaded with similar gold-coated liposomes, internalized by macropinocytosis, and then exposed to on-resonant laser light to trigger on-demand release of IP3 to activate Ca²⁺ signaling. Lastly, a 3D cell culture model of ovarian cancer microenvironment was developed as a platform for interrogating cell signaling. The in vitro model comprised human ovarian cancerous epithelial cells grown upon a collagen and human fibroblast stroma recapitulating architecture of human tissue. Gold-coated liposomes encapsulating signaling molecules, optical manipulation, and a 3D model of ovarian cancer, a trio of versatile experimental tools opens new opportunities for studying the tumor microenvironment.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.