• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Advanced Theory of Field Curvature

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13404_sip1_m.pdf
    Size:
    2.740Mb
    Format:
    PDF
    Download
    Author
    Wang, Yuhao
    Issue Date
    2014
    Keywords
    Asphere
    Field Curvature
    Optical Sciences
    Aberration
    Advisor
    Sasian, Jose M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 13-Feb-2015
    Abstract
    Classical field curvature theory emphasizes the Petzval theorem, which models field curvature aberration to the 4th order. However, modern lens designs use aspheric surfaces. These surfaces strongly induce higher order field curvature aberration which is not accounted for Petzval field curvature. This dissertation focuses on developing higher order field curvature theories that are applied to highly aspheric designs. Three new theories to control field curvature aberration are discussed. Theory 1: an aspheric surface that is close to the image and has two aspheric terms sharply reduces field curvature by 85%. Theory 2: an aspheric surface that is farther from the image plane induces astigmatism to balance Petzval field curvature. Theory 3: oblique spherical aberration can be induced to balance Petzval field curvature. All three theories are applied to real design examples including the following lenses: cellular phone, wide angle, fast photographic, and zoom lenses. All of the analyses results are consistent with the theories. Moreover, two types of novel aspheric surfaces are proposed to control field curvature. Neither of the surfaces are polynomial-type surfaces. Examples show that the novel aspheric surfaces are equivalent to even aspheric surfaces with two aspheric coefficients in terms of field curvature correction. The study on field curvature correction using aspheric surfaces provides an alternative method to use when aspheres are accessible. Overall, this dissertation advances the theory of field curvature aberration, and it is particularly valuable to evaluate highly aspheric designs when Petzval theory is inapplicable.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.