• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation and Optimization of Turnaround Time and Cost of HPC Applications on the Cloud

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13461_sip1_m.pdf
    Size:
    604.2Kb
    Format:
    PDF
    Download
    Author
    Marathe, Aniruddha Prakash
    Issue Date
    2014
    Keywords
    Cloud Computing
    Cost-performance tradeoff
    High Performance Computing
    Scheduling
    Spot Market
    Computer Science
    Amazon EC2
    Advisor
    Lowenthal, David K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The popularity of Amazon's EC2 cloud platform has increased in commercial and scientific high-performance computing (HPC) applications domain in recent years. However, many HPC users consider dedicated high-performance clusters, typically found in large compute centers such as those in national laboratories, to be far superior to EC2 because of significant communication overhead of the latter. We find this view to be quite narrow and the proper metrics for comparing high-performance clusters to EC2 is turnaround time and cost. In this work, we first compare the HPC-grade EC2 cluster to top-of-the-line HPC clusters based on turnaround time and total cost of execution. When measuring turnaround time, we include expected queue wait time on HPC clusters. Our results show that although as expected, standard HPC clusters are superior in raw performance, they suffer from potentially significant queue wait times. We show that EC2 clusters may produce better turnaround times due to typically lower wait queue times. To estimate cost, we developed a pricing model---relative to EC2's node-hour prices---to set node-hour prices for (currently free) HPC clusters. We observe that the cost-effectiveness of running an application on a cluster depends on raw performance and application scalability. However, despite the potentially lower queue wait and turnaround times, the primary barrier to using clouds for many HPC users is the cost. Amazon EC2 provides a fixed-cost option (called on-demand) and a variable-cost, auction-based option (called the spot market). The spot market trades lower cost for potential interruptions that necessitate checkpointing; if the market price exceeds the bid price, a node is taken away from the user without warning. We explore techniques to maximize performance per dollar given a time constraint within which an application must complete. Specifically, we design and implement multiple techniques to reduce expected cost by exploiting redundancy in the EC2 spot market. We then design an adaptive algorithm that selects a scheduling algorithm and determines the bid price. We show that our adaptive algorithm executes programs up to 7x cheaper than using the on-demand market and up to 44% cheaper than the best non-redundant, spot-market algorithm. Finally, we extend our adaptive algorithm to exploit several opportunities for cost-savings on the EC2 spot market. First, we incorporate application scalability characteristics into our adaptive policy. We show that the adaptive algorithm informed with scalability characteristics of applications achieves up to 56% cost-savings compared to the expected cost for the base adaptive algorithm run at a fixed, user-defined scale. Second, we demonstrate potential for obtaining considerable free computation time on the spot market enabled by its hour-boundary pricing model.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Computer Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.