• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Long Term Impact of Biomineralization in Arsenic Fate Under Simulated Landfill Conditions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13460_sip1_m.pdf
    Size:
    4.386Mb
    Format:
    PDF
    Download
    Author
    Fathordoobadi, Sahar
    Issue Date
    2014
    Keywords
    Arsenic
    Arsenic Bearing Solid Residuals (ABSRs)
    Biomineralization
    Sulfate
    Vivianite
    Environmental Engineering
    Amorphous Ferric Hydroxide
    Advisor
    Ela, Wendell P.
    Sáez, A. Eduardo
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 04-Aug-2016
    Abstract
    Lowering the Maximum Contaminant Level (MCL) for arsenic in drinking water in the U.S., has caused a significant increase in the volume of Arsenic Bearing Solid Residuals (ABSRs) generated by drinking water utilities. Most of the affected utilities are smaller water treatment facilities, especially in the arid Southwest, and are expected to use adsorption onto solid sorbents for arsenic removal. Because of their high adsorption capacity and low cost, iron sorbents are used treatment technology and, when the sorbent's capacity is spent, these ABSRs are disposed in municipal solid waste (MSW) landfills and as a consequence arsenic is likely being released into leachate. However, a mature landfill is a biotic, reducing environment, which causes arsenic reduction and mobilization from the ABSRs. It is well documented that iron and sulfur redox cycles largely control arsenic cycling and, because iron and sulfur are ubiquitous in MSW, it is suspected that they play key roles in arsenic disposition in the landfill microcosm. The purpose of this study is to investigate the degree to which sulfate can prevent arsenic from leaching into landfill through biomineralization and to study ABSRs biogeochemical weathering effect on arsenic sequestration. The primary routes of iron and sulfate reduction in landfills are microbially mediated and biomineralization is a common by-product. In this case, biomineralization is the transformation of ferric (hydr) oxides into ferrous iron phase and sulfate into sulfide minerals such as: siderite (FeCO₃), vivianite (Fe₃(PO₄)₂), iron sulfide (FeS), goethite (α-FeOOH), and realgar (AsS). In this work, long-term microbial reduction and biomineralization of iron, sulfur, and arsenic species are evaluated as processes that both cause arsenic release from landfilled ABSRs and may possibly provide a means to re-sequester As in a recalcitrant solid state. The work uses long-term, continuous flow-through laboratory-scale columns in which controlled conditions similar to those found in a mature landfill prevail. In these simulated landfill column experiments, formation of biominerals, same as those that would naturally occur in typical non-hazardous MSW landfills, will be investigated. The feed contains lactate as the carbon source and primary electron donor, and ferric iron, arsenate, and a range of sulfate concentrations as primary electron acceptors. Our results suggest that biomineralization changes the stability of arsenic through a number of different processes including (i) release of arsenic through reductive dissolution of iron-based ABSRs; and (ii) readsorption/incorporation of released arsenic to secondary biominerals. The influence of biominerals, which have less surface area and adsorption capacity than original AFH, on the retention of arsenic is also investigated in this study. Our results show that the concentration of sulfate fed to the system affects the biomineral formation, and that the relative amounts and sequence of precipitation of biominerals affect the free arsenic concentration that can seemingly be engineered by the concentration of sulfate fed to the system. Comparison between the columns with different sulfate concentrations indicate that inflow sulfate concentration higher than 2.08 mM decreases As mobilization to <50%.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.