• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Mechanism of Allosteric Regulation in Soluble Guanylate Cyclase

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13487_sip1_m.pdf
    Size:
    6.355Mb
    Format:
    PDF
    Download
    Author
    Purohit, Rahul
    Issue Date
    2014
    Keywords
    Soluble Guanylyl Cyclase
    YC-1
    BAY
    Chemistry
    Soluble Guanylate Cyclase
    Advisor
    Montfort, William R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 01-Feb-2015
    Abstract
    Nitric oxide (NO), a reactive diatomic gas and a potent signaling molecule, is required for proper cardiovascular functioning. Soluble guanylate cyclase (sGC), a heterodimeric heme protein, is the key intracellular NO receptor protein which, upon NO binding, undergoes conformational changes leading to catalysis and the cGMP signaling cascade. Several small molecules that allosterically stimulate sGC have been developed for treatment of pulmonary hypertension, but little is known about their binding site or how they stimulate activity. This dissertation describes experiments designed to uncover the molecular basis for signal transduction in sGC by NO and small molecule stimulators. The crystal structure of the α-subunit PAS domain from Manduca sexta (Ms) sGC was solved at 1.8 Å resolution revealing the expected PAS fold but with an additional β strand and a shorter Fα helix. CO binding measurements on different Ms sGC N-terminal constructs and the β₁ (1-380) construct revealed that the α-subunit keeps the β₁ H-NOX domain in an inhibited conformation and this inhibition is relieved by removal of the α-subunit or by addition of stimulatory compounds such as compound YC-1. Linked-equilibria measurements on the N-terminal constructs show that YC-1 binding affinity is increased in the presence of CO. Surface plasmon resonance (SPR) studies on the in-vitro biotinylated constructs showed that YC-1 binds near or directly to the β₁ H-NOX domain. Computational and mutational analysis of the β₁ H-NOX domain revealed a pocket important in allostery and drug action. Finally, we show that the coiled coil domain plays an important role in allosteric regulation of the β₁ H-NOX domain and possibly in signal transduction. Our data are consistent with a model of allosteric activation in which the α-subunit and the coiled coil domains function to keep heme in a low affinity conformation while YC-1 binding to the β₁ H-NOX domain switches heme to a high affinity conformation, and sGC to its high activity form.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.