• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    The developmental origins and functional role of postcranial adaptive morphology in human bipedal anatomy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13501_sip1_m.pdf
    Size:
    2.891Mb
    Format:
    PDF
    Download
    Author
    Foster, Adam D.
    Issue Date
    2014
    Keywords
    chimpanzee
    developmental plasticity
    limb length
    weight support
    Anthropology
    bipedalism
    Advisor
    Raichlen, David A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 13-Feb-2015
    Abstract
    When considering the array of terrestrial locomotor behaviors, bipedalism is a particularly rare way of moving about the landscape. In fact, humans are the only obligate terrestrial mammalian bipeds. Therefore, understanding both how and why it evolved is particularly intriguing. However, there is debate over why the evolution of bipedalism occurred and there is a large gap in knowledge for the mechanisms that underpin the evolution of these adaptive morphologies. One complicating factor for sorting out which models best explain how our hominin ancestors became bipedal is that they all rely on the same set of traits. Moreover, many of the traits that are thought to be diagnostic of bipedalism are only linked by association and have not been experimentally tested. That is, they do not appear in non-human primates and other quadrupeds. Therefore, addressing why the evolution of bipedalism occurred requires understanding the adaptive significance of traits linked with bipedalism. In this dissertation, I use an experimental approach employing both human and animal models to explore links between morphology and behavior and to tease apart the adaptive significance of particular traits. For the human portion of the dissertation, I use an inverse dynamics approach (estimating muscle forces from kinematic, kinetic, and anatomical data) to determine how modern human anatomy functions while walking using ape-like postures to clarify the links between morphology and energy costs in different mechanical regimes to determine the adaptive significance of postcranial anatomy. The results from this portion of the dissertation suggest that adopting different joint postures results in higher energy costs in humans due to an increase in active muscle volumes at the knee. These results lead to two conclusions important for understanding the evolution of human bipedalism. One is that human anatomy maintains low energy costs of walking in humans compared to chimpanzees regardless of lower limb postures. Second, the results suggest that erect trunk posture may be an important factor in reducing energy costs, therefore indicating that lumbar lordosis (the curvature of the lower spine) is important for reducing costs. For the animal portion of the dissertation, I use rats as a model for the quadrupedal-to-bipedal transition and experimentally induce bipedal posture and locomotion under a variety of loading conditions to determine if traits consistent with the evolution of bipedalism occur and under what conditions. This experimental design also has the ability to determine if there is a role for developmental plasticity in generating bipedal morphology to help answer the question how the evolution of bipedalism occurred. I find that inducing bipedal behaviors in a quadrupedal animal generates morphology consistent with human bipedal traits and that loading conditions have specific effects in different skeletal elements and at particular joints. I also find that there is a plausible role for developmental plasticity in generating adaptive bipedal morphology in the earliest hominins. Overall, the results from the experimental procedures in this dissertation were able to clarify links between behavior and bipedal morphology, demonstrate a plausible role for developmental plasticity in early adaptation to bipedal behavior in australopiths, determine the adaptive significance of human postcranial anatomy, and the ways in which postcranial anatomy reduces costs.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Anthropology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.