• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel Product Formation and Substrate Specificity of the Phospholipase D Toxins in the Venom of the Sicariidae Spider Family

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13509_sip1_m.pdf
    Size:
    21.37Mb
    Format:
    PDF
    Download
    Author
    Lajoie, Daniel M.
    Issue Date
    2014
    Keywords
    Phospholipase D
    Spider
    Toxin
    Toxinology
    Venom
    Biochemistry
    Loxoscelism
    Advisor
    Cordes, Matthew, H. J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 13-Aug-2015
    Abstract
    Venoms of the Sicariidae spider family contain phospholipase D (PLD) enzyme toxins that can cause severe dermonecrosis and even death in humans. PLD toxins are known to cleave the substrates sphingomyelin (SM) and lysophosphatidylcholine (LPC) in mammalian tissues, releasing a choline headgroup and a reported monoester phospholipid formed via a hydrolytic reaction. However, some PLD toxins have demonstrated the ability to utilize substrates besides SM and LPC and other PLD toxins have demonstrated no activity against either SM or LPC. Given that the etiology of the disease state following envenomation is not well understood, we postulated that PLD toxins could be utilizing other phospholipid substrates in vivo. To determine the level of promiscuity among the PLD toxins, we developed a novel ³¹P-NMR assay to measure phospholipase activity against a panel of potential phospholipid substrates. While developing the assay, we made the surprising discovery that recombinant PLD toxins, as well as whole venoms from diverse Sicariidae species, exclusively generates cyclic phosphate rather than hydrolytic products. We also found that a distantly related PLD toxin from a pathogenic bacterium, with low sequence identity to the spider PLDs, exclusively generates cyclic phosphate products. We then established that St_βIB1i, a PLD with extremely diminished activity toward SM and LPC, actually demonstrates large preferential specificity towards ethanolamine phospholipid substrates. We solved the crystal structure of St_βIB1i to compare to PLD toxins of known structure, toward an understanding of the molecular basis of substrate specificity. The cyclic phosphate products generated by the PLD toxins have extremely different biochemical properties than their monoester counterparts and may be relevant to the pathology following envenomation or bacterial infection. In addition the specificity St_βIB1i has for ethanolamine substrates may have biological implications, as insects have high concentrations of ethanolamine-containing phospholipids.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biochemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.