• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Application of Digital Micromirror Devices to Atmospheric Lidar Measurement and Calibration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13522_sip1_m.pdf
    Size:
    15.52Mb
    Format:
    PDF
    Download
    Author
    Anderton, Blake Jerome
    Issue Date
    2014
    Keywords
    ladar
    lidar
    micromirror
    overlap
    radar
    Optical Sciences
    aerosol
    Advisor
    Reagan, John
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 14-Aug-2016
    Abstract
    A novel design for atmospheric laser radar (lidar) is presented, implementing a digital micromirror device (DMD) for use in (A) aligning transmitter and receiver boresight angles and in (B) field-of-view (FOV) control of such "DMD lidar" instruments. A novel technique is presented to extract the transmitter-receiver overlap-compensation function from ratioing data from different FOVs in the same pointing direction. DMD lidar design considerations and trades are surveyed. Principles of modeling DMD lidar performance are introduced and implemented in a performance-predictive system simulation with data-validated results. Operational capabilities of DMD lidar are demonstrated through a hardware prototype with field measurement examples. Additional capabilities offered by integrating DMD within lidar and other optical systems are presented, including single-pixel Radon-imaging techniques.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.