Small Molecule Approaches Toward Therapeutics for Alzheimer's Disease and Colon Cancer
Name:
azu_etd_13564_sip1_m.pdf
Size:
13.49Mb
Format:
PDF
Description:
Dissertation not available in ...
Author
Smith, Breland EliseIssue Date
2014Advisor
Hulme, Christopher
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Embargo
Dissertation not available (per author's request)Abstract
The research described in this dissertation is focused on the knowledge-based, often in silico assisted design, targeted synthesis, and biological evaluation of small molecules of interest for two translational medicinal chemistry projects. The first project (Part 1) is aimed at the identification of blood brain barrier (BBB) penetrable dual specificity tyrosine phosphorylation regulated kinase-1A (DYRK1A) inhibitors as a potential disease modifying approach to mitigate cognitive deficits associated with Alzheimer's neurodegeneration. Two major series with potent activity against DYRK1A were identified in addition to a number of other chemotype sub-series that also exhibit somewhat promising activity. Extensive profiling of active analogs revealed interesting biological activity and selectivity, which led to the identification of two analogs for in vivo studies and revealed new opportunities for further investigation into other kinase targets implicated in neurodegeneration and polypharmacological approaches. The second project (Part 2) is focused on the development of compounds that inhibit PGE₂ production, while not affecting cyclooxygenase (COX) activity, as a novel approach to treat cancer. Compounds were designed with the intention of inhibiting microsomal prostaglandin E₂ synthase-1 (mPGES-1); however, biological evaluation revealed phenotypically active compounds in a cell based assay with an unknown mechanism of action. Further profiling revealed promising anticancer activity in xenograft mouse models. In addition, PGE₂ has been implicated in an immune evasion mechanism of F. tularensis, a strain of bacteria that remains an exploitable threat in biowarfare, thus a small number of analogs were evaluated in a cell model of F. tularensis infection stimulated PGE₂ production.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeBiochemistry