• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Consequences of Morphine Administration in Cancer-Induced Bone Pain: Using the Pitfalls of Morphine Therapy to Develop Targeted Adjunct Strategies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    etd_13554_sip1_m.pdf
    Size:
    6.707Mb
    Format:
    PDF
    Download
    Author
    Liguori, Ashley Michele
    Issue Date
    2014
    Keywords
    bone pain
    cancer pain
    morphine
    opioid
    toll-like receptor 4
    Medical Pharmacology
    bone loss
    Advisor
    Vanderah, Todd W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 06-Oct-2015
    Abstract
    Many common cancers have a predisposition for bone metastasis. Tumor occupation of bone is both destructive and a source of debilitating pain in cancer patients. As a result, cancer-induced bone pain (CIBP) is the single most common form of clinical cancer pain. Opioids remain the golden standard for the management of CIBP; however, >30% of cancer patients do not experience adequate pain relief with opioids. Furthermore, clinical reports have suggested that opioids can exacerbate bone loss and increase the likelihood of skeletal-related events. To date, there is no known direct mechanism for opioid-induced bone loss (OIBL). We hypothesized that opioid off-target activation of toll-like receptor 4 (TLR4), an innate immune receptor that is expressed in bone, mediates an increase bone loss and associated CIBP. In the 66.1-BALB/cfC3H murine model of breast cancer bone metastasis, TLR4 expression is upregulated in tumor-burdened bone. Chronic morphine treatment exacerbated spontaneous and evoked pain behaviors in a manner paralleled by bone loss: we identified an increase in spontaneous fracture and osteolysis markers including serum collagen-type I (CTX) and intramedullary receptor activator of nuclear κ-B ligand (RANKL). Administration of (+)naloxone, a non-opioid TLR4 antagonist, attenuated both exacerbation of CIBP and morphine-induced osteolytic changes in vivo. Morphine did not alter tumor burden in vivo or tumor cell growth in vitro. Importantly, morphine produced the in vitro differentiation and activation of osteoclasts in a dose-dependent manner that was reversible with (+)naloxone, suggesting that morphine may contribute directly to osteolytic activation. To improve opioid management of CIBP, we then posited and evaluated three novel adjunct therapeutic targets: cannabinoid receptor-2, adenosine 3 receptor and sphingosine-1-phosphate receptor 1. These pharmacological targets were identified as having a multiplicity of anti-cancer, osteoprotective and/or neuroprotective effects in addition to analgesic efficacy in chronic pain. Targets were tested in the 66.1-BALB/cfC3H model of CIBP and demonstrated to have stand-alone efficacy as antinociceptive agents. Taken together, this work provides a cautionary evaluation of opioid therapy in cancer-induced bone pain and seeks to mitigate opioid side effects through the identification of innovative adjunct therapies that can ultimately improve quality of life in patients suffering from cancer pain.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Medical Pharmacology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.