Show simple item record

dc.contributor.advisorGreivenkamp, John E.en_US
dc.contributor.authorHeideman, Kyle C.
dc.creatorHeideman, Kyle C.en_US
dc.date.accessioned2014-12-18T19:56:26Z
dc.date.available2014-12-18T19:56:26Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/10150/337379
dc.description.abstractMeasurement of the quality and performance of soft contact lenses is not new and is continually evolving as manufacturing methods develop and more complicated contact lenses become available. Qualification of soft contact lenses has not been a simple task since they are fundamentally difficult to measure. The shape of the lens is extremely sensitive to how the lens is supported and the material properties can change quickly with time. These lenses have been measured in several different ways, the most successful being non-contact optical methods that measure the lens while it is immersed in saline solution. All of these tests measure the lens in transmission and do not directly measure the surface structure of the lens. The reason for this is that the Fresnel reflectivity of the surface of a contact lens in saline solution is about 0.07%. Surface measurements have been performed in air, but not in saline. The lens needs to be measured in solution so that it can maintain its true shape. An interferometer is proposed, constructed, verified, and demonstrated to measure the aspheric low reflectivity surfaces of a contact lens while they are immersed in saline solution. The problem is extremely difficult and requires delicate balance between stray light mitigation, color correction, and polarization management. The resulting system implements reverse raytracing algorithms to correct for retrace errors so that highly aspheric, toric, and distorted contact lens surfaces can be measured. The interferometer is capable of measuring both surfaces from the same side of the contact lens as well as the lens thickness. These measurements along with the index of refraction of the lens material are enough build a complete 3D model of the lens. A simulated transmission test of the 3D model has been shown to match the real transmission test of the same lens to within 32nm RMS or 1/20th of a wave at the test wavelength.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectContact lensesen_US
dc.subjectInterferometryen_US
dc.subjectLow coherenceen_US
dc.subjectMetrologyen_US
dc.subjectOptical Sciencesen_US
dc.subjectAsphereen_US
dc.titleSurface Metrology of Contact Lenses in Saline Solutionen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberGreivenkamp, John E.en_US
dc.contributor.committeememberSasian, Joseen_US
dc.contributor.committeememberWyant, Jamesen_US
dc.description.releaseRelease 18-Oct-2015en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2015-10-18T00:00:00Z
html.description.abstractMeasurement of the quality and performance of soft contact lenses is not new and is continually evolving as manufacturing methods develop and more complicated contact lenses become available. Qualification of soft contact lenses has not been a simple task since they are fundamentally difficult to measure. The shape of the lens is extremely sensitive to how the lens is supported and the material properties can change quickly with time. These lenses have been measured in several different ways, the most successful being non-contact optical methods that measure the lens while it is immersed in saline solution. All of these tests measure the lens in transmission and do not directly measure the surface structure of the lens. The reason for this is that the Fresnel reflectivity of the surface of a contact lens in saline solution is about 0.07%. Surface measurements have been performed in air, but not in saline. The lens needs to be measured in solution so that it can maintain its true shape. An interferometer is proposed, constructed, verified, and demonstrated to measure the aspheric low reflectivity surfaces of a contact lens while they are immersed in saline solution. The problem is extremely difficult and requires delicate balance between stray light mitigation, color correction, and polarization management. The resulting system implements reverse raytracing algorithms to correct for retrace errors so that highly aspheric, toric, and distorted contact lens surfaces can be measured. The interferometer is capable of measuring both surfaces from the same side of the contact lens as well as the lens thickness. These measurements along with the index of refraction of the lens material are enough build a complete 3D model of the lens. A simulated transmission test of the 3D model has been shown to match the real transmission test of the same lens to within 32nm RMS or 1/20th of a wave at the test wavelength.


Files in this item

Thumbnail
Name:
etd_13563_sip1_m.pdf
Size:
27.97Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record