We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Filling in the Gaps: Illuminating (a) Clearing Mechanisms in Transitional Protoplanetary Disks, and (b) Quantitative Illiteracy among Undergraduate Science Students
Author
Follette, Katherine BrutlagIssue Date
2014Keywords
circumstellar disksplanet formation
quantitative literacy
transition disks
adaptive optics
Astronomy
Advisor
Close, Laird M.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
What processes are responsible for the dispersal of protoplanetary disks? In this dissertation, beginning with a brief Introduction to planet detection, disk dispersal and high-contrast imaging in Chapter 1, I will describe how ground-based adaptive optics (AO) imaging can help to inform these processes. Chapter 2 presents Polarized Differential Imaging (PDI) of the transitional disk SR21 at H-band taken as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS). These observations were the first to show that transition disk cavities can appear markedly different at different wavelengths. The observation that the sub-mm cavity is absent in NIR scattered light is consistent with grain filtration at a planet-induced gap edge. Chapter 3 presents SEEDS data of the transition disk Oph IRS 48. This highly asymmetrical disk is also most consistent with a planet-induced clearing mechanism. In particular, the images reveal both the disk cavity and a spiral arm/divot that had not been imaged previously. This study demonstrates the power of multiwavelength PDI imaging to verify disk structure and to probe azimuthal variation in grain properties. Chapter 4 presents Magellan visible light adaptive optics imaging of the silhouette disk Orion 218-354. In addition to its technical merits, these observations reveal the surprising fact that this very young disk is optically thin at H-alpha. The simplest explanation for this observation is that significant grain growth has occurred in this disk, which may be responsible for the pre-transitional nature of its SED. Chapter 5 presents brief descriptions of several other works-in-progress that build on my previous work. These include the MagAO Giant Accreting Protoplanet Survey (GAPlanetS), which will probe the inner regions of transition disks at unprecedented resolution in search of young planets in the process of formation. Chapters 6-8 represent my educational research in quantitative literacy, beginning with an introduction to the literature and study motivation in Chapter 6. Chapter 7 describes the development and validation of the Quantitative Reasoning for College Science (QuaRCS) Assessment instrument. Chapter 8 briefly describes the next steps for Phase II of the QuaRCS study.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeAstronomy