• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Dicarbonyl Protein Adduction: Plasminogen as a Target and Metformin as a Scavenging Therapeutic in Type 2 Diabetes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13697_sip1_m.pdf
    Size:
    14.02Mb
    Format:
    PDF
    Download
    Author
    Kinsky, Owen Robert
    Issue Date
    2014
    Keywords
    metformin
    methylglyoxal
    plasminogen
    protein adduction
    type 2 diabetes
    Pharmacology & Toxicology
    glycation
    Advisor
    Lau, Serrine S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 1-Jun-2016
    Abstract
    Formation of advanced glycation endproducts (AGEs) on proteins has been linked to the pathogenesis of diabetic complications. Importantly, elevated levels of methylglyoxal (MG) occur in type 2 diabetes mellitus (T2DM), and the resulting site-specific formation of stable adducts on arginine residues can cause protein damage. Using MG, site-specific modifications on the plasma protein plasminogen (Pg) were determined following protein digestion into peptides and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis, and 30 arginine sites were identified on the protein. Investigation into three of the most highly modified sites, R504, R530, and R561, using molecular modeling, identified likely functional changes to the Pg cleavage and the lysine binding pocket as a result of adduct formation at these sites. Overall functional changes to Pg were examined using silver staining and kinetic assays to examine normal protein cleavage by activator enzymes streptokinase (STK), tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). MG-modified Pg exhibited decreased activation into plasmin (Pn), which is the active enzyme that forms via normal Pg cleavage, by all three activator enzymes. Activation into Pn by STK was significantly delayed by MG modification on plasminogen. Similar effects were observed with tPA and uPA. Efforts to identify the primary sites of MG adduction on Pg by two dimensional gel electrophoresis (2DGE) identified six sites, including R504 and R530, as the earliest modified sites. In order to probe MG site specific modification effects on lysine binding, MG-modified protein was run through a lysine-sepharose binding column and fractions were collected. The results indicated that MG-modified Pg bound more weakly to the column and eluted easier than unmodified Pg and LC-MS/MS using a LTQ Orbitrap Velos of the fraction indicated that R504 and R530 were the primary sites of MG adduction within the eluate. To assess MG-modification of Pg in humans, 12 plasma samples were immunodepleted of the top 14 abundant proteins and samples were analyzed by LC-MS/MS using a LTQ Orbitrap Velos. Nine of the 12 patient samples indicated the presence of MG-modified peptides. The antihyperglycemic drug metformin, a drug that scavenges MG and lowers formation of AGEs, was studied in order to better elucidate this scavenging mechanism. A novel reaction imidazolinone product, IMZ, was determined to be the primary product formed in the reaction between metformin and MG, confirmed unequivocally through x-ray diffraction analysis. In order to determine levels of IMZ in human patients on metformin therapy, multiple reaction monitoring (MRM) was employed to quantify the compound. Human urine samples from 92 patients on metformin treatment were analyzed. 66 of the 68 patients to exhibit high concentrations of metformin also indicated the presence of IMZ in their urine. The remaining samples either exhibited no metformin, or levels of metformin too low to detect the presence of IMZ. Importantly, IMZ was never identified in patients without a metformin signal, indicating the validity and quality of the assay. This dissertation builds upon the current knowledge of site-specific MG modifications, both in vitro, identifying for the first time Pg as a sensitive site-specific target of glycation, with functional effects, and importantly in humans, as this is the first identification of MG-modified Pg in vivo. The functional effects associated with this modification may provide a link between elevated MG in T2DM, and resulting cardiovascular complications. Additionally, the identification of the novel reaction product IMZ is important, as it helps to fully elucidate the role metformin plays in treating T2DM patients. The detection of IMZ in the urine of human patients on metformin therapy indicates that metformin plays a role in the reducing MG levels through scavenging in vivo, and the developed MRM method allows for future rapid, sensitive study of cohorts to better understand this mechanism and the role it plays in reducing AGEs and diabetic complications.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.