• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Generalized Pupil Aberrations Of Optical Imaging Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13689_sip1_m.pdf
    Size:
    3.885Mb
    Format:
    PDF
    Download
    Author
    Elazhary, Tamer Mohamed Tawfik Ahmed Mohamed
    Issue Date
    2014
    Keywords
    freeform optics
    Lens design
    Optical Sciences
    Aberrations theory
    Advisor
    Burge, James H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this dissertation fully general conditions are presented to correct linear and quadratic field dependent aberrations that do not use any symmetry. They accurately predict the change in imaging aberrations in the presence of lower order field dependent aberrations. The definitions of the image, object, and coordinate system are completely arbitrary. These conditions are derived using a differential operator on the scalar wavefront function. The relationships are verified using ray trace simulations of a number of systems with varying degrees of complexity. The math is shown to be extendable to provide full expansion of the scalar aberration function about field. These conditions are used to guide the design of imaging systems starting with only paraxial surface patches, then growing freeform surfaces that maintain the analytic conditions satisfied for each point in the pupil. Two methods are proposed for the design of axisymmetric and plane symmetric optical imaging systems. Design examples are presented as a proof of the concept.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.