• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Simulation-Based Robust Revenue Maximization Of Coal Mines Using Response Surface Methodology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13631_sip1_m.pdf
    Size:
    2.542Mb
    Format:
    PDF
    Download
    Author
    Nageshwaraniyergopalakrishnan, Saisrinivas
    Issue Date
    2014
    Keywords
    Discrete-event Simulation
    Mining
    Response surface Methodology
    Simulation Metamodeling
    Simulation Optimization
    Systems & Industrial Engineering
    Common Random Numbers
    Advisor
    Son, Young-Jun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A robust simulation-based optimization approach is proposed for truck-shovel systems in surface coal mines to maximize the expected value of revenue obtained from loading customer trains. To this end, a large surface coal mine in North America is considered as case study. A data-driven modeling framework is developed and then applied to automatically generate a highly detailed simulation model of the mine in Arena. The framework comprises a formal information model based on Unified Modeling Language (UML), which is used to input mine structural as well as production information. Petri net-based model generation procedures are applied to automatically generate the simulation model based on the whole set of simulation inputs. Then, factors encountered in material handling operations that may affect the robustness of revenue are then classified into 1) controllable; and 2) uncontrollable categories. While controllable factors are trucks locked to routes, uncontrollable factors are inverses of summation over truck haul, and shovel loading and truck-dumping times for each route. Historical production data of the mine contained in a data warehouse is used to derive probability distributions for the uncontrollable factors. The data warehouse is implemented in Microsoft SQL, and contains snapshots of historical equipment statuses and production outputs taken at regular intervals in each shift of the mine. Response Surface Methodology is applied to derive an expression for the variance of revenue as a function of controllable and uncontrollable factors. More specifically, 1) first order and second order effects for controllable factors, 2) first order effects for uncontrollable factors, and 3) two factor interactions for controllable and uncontrollable factors are considered. Latin Hypercube Sampling method is applied for setting controllable factors and the means of uncontrollable factors. Also, Common Random Numbers method is applied to generate the sequence of pseudo-random numbers for uncontrollable factors in simulation experiments for variance reduction between different design points of the metamodel. The variance of the metamodel is validated using leave-one-out cross validation. It is later applied as an additional constraint to the mathematical formulation to maximize revenue in the simulation model using OptQuest. The decision variables in this formulation are truck locks only. Revenue is a function of the actual quality of coal delivered to each customer and their corresponding quality specifications for premiums and penalties. OptQuest is an optimization add-on for Arena that uses Tabu search and Scatter search algorithms to arrive at the optimal solution. The upper bound on the variance as a constraint is varied to obtain different sets of expected value as well as variance of optimal revenue. After comparison with results using OptQuest with random sampling and without variance expression of metamodel, it has been shown that the proposed approach can be applied to obtain the decision variable set that not only results in a higher expected value but also a narrower confidence interval for optimum revenue. According to the best of our knowledge, there are two major contributions from this research: 1) It is theoretically demonstrated using 2-point and orthonormal k-point response surfaces that Common Random Numbers reduces the error in estimation of variance of metamodel of simulation model. 2) A data-driven modeling and simulation framework has been proposed for automatically generating discrete-event simulation model of large surface coal mines to reduce modeling time, expenditure, as well as human errors associated with manual development.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.