• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Imaging Variations in the Central Andean Mantle and the Subducting Nazca Slab with Teleseismic Tomography

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13796_sip1_m.pdf
    Size:
    21.57Mb
    Format:
    PDF
    Description:
    Dissertation
    Download
    Thumbnail
    Name:
    Scire.2015_AppendixB_TableS1_S ...
    Size:
    1.866Mb
    Format:
    Text file
    Description:
    Supplemental File - Appendix B
    Download
    Author
    Scire, Alissa
    Issue Date
    2015
    Keywords
    South American Andes
    teleseismic tomography
    Geosciences
    seismology
    Advisor
    Zandt, George
    Beck, Susan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The Nazca-South America convergent margin is marked by the presence of the Andean mountain belt, which stretches along the 8000-km long western margin of the South American plate. The subduction zone is characterized by significant along-strike changes in both upper plate structure and slab geometry that make it an ideal region to study the relationship between the subducting slab, the surrounding mantle, and the overriding plate. This dissertation summarizes the results of three finite frequency teleseismic tomography studies of the central Nazca-South America subduction zone which improve our understanding of how along-strike variations in the Andean mountain belt and the subducting Nazca plate interact with each other and with the surrounding mantle. This is accomplished by first focusing on two smaller adjacent regions of the central Andes to explore upper mantle variations and then by using a combined dataset, which covers a larger region, to image the deeply subducted Nazca slab to investigate the fate of the slab. The first study focuses on the central Andean upper mantle under the Altiplano-Puna Plateau where normally dipping subduction of the Nazca plate is occurring (18° to 28°S). The shallow mantle under the Eastern Cordillera is generally fast, consistent with either underthrusting of the Brazilian cratonic lithosphere from the east or a localized "curtain" of delaminating material. Additional evidence for delamination is seen in the form of high amplitude low velocities under the Puna Plateau, consistent with proposed asthenospheric influx following lithospheric removal. In the second study, we explore the transition between normal and flat subduction along the north edge of the Altiplano Plateau (8° to 21°S). We find that the Peruvian flat slab extends further inland along the projection of the Nazca Ridge than was previously proposed and that when re-steepening of the slab occurs, the slab dips very steeply (~70°) down through the mantle transition zone (MTZ). We also tentatively propose a ridge parallel tear along the north edge of the Nazca Ridge. Both of these observations imply that the presence of the Nazca Ridge is at least locally influencing the geometry of the flat slab. The final study investigates along-strike variations in the deeply subducted Nazca slab along much of the central Nazca-South America subduction zone (6° to 32°S). Our results confirm that the Nazca slab continues subducting into the lower mantle rather than remaining stagnant in the MTZ. Thickening of the slab in the MTZ north of 16°S is interpreted as folding or buckling of the slab in response to the decreased slab sinking velocities in the lower mantle.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.