• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modular Symbols Modulo Eisenstein Ideals for Bianchi Spaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13856_sip1_m.pdf
    Size:
    397.6Kb
    Format:
    PDF
    Download
    Author
    Powell, Kevin James
    Issue Date
    2015
    Keywords
    Eisenstein ideal
    Hecke operator
    homology
    manin symbol
    modular symbol
    Mathematics
    Bianchi
    Advisor
    Sharifi, Romyar
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this thesis is two-fold. First, it gives an efficient method for calculating the action of Hecke operators in terms of "Manin" symbols, otherwise known as "M-symbols," in the first homology group of Bianchi spaces. Second, it presents data that may be used to understand and better state an unpublished conjecture of Fukaya, Kato, and Sharifi concerning the structure of Bianchi Spaces modulo Eisenstein ideals [5]. Swan, Cremona, and others have studied the homology of Bianchi spaces characterized as certain quotients of hyperbolic 3-space [3], [13]. The first homology groups are generated both by modular symbols and a certain subset of them: the Manin symbols. This is completely analogous to the study of the homology of modular curves. For modular curves, Merel developed a technique for calculating the action of Hecke operators completely in terms of "Manin" symbols [10]. For Bianchi spaces, Bygott and Lingham outlined methods for calculating the action of Hecke operators in terms of modular symbols [2], [9]. This thesis generalizes the work of Merel to Bianchi spaces. The relevant Bianchi spaces are characterized by imaginary quadratic fields K. The methods described in this thesis deal primarily with the case that the ring of integers of K is a PID. Let p be an odd prime that is split in K. The calculations give the F_p-dimension of the homology modulo both p and an Eisenstein ideal. Data is given for primes less than 50 and the five Euclidean imaginary quadratic fields Q(√-1), Q(√-2), Q(√-3), Q(√-7), and Q(√-11). All of the data presented in this thesis comes from computations done using the computer algebra package Magma.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.