• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Geometry and Fluence Effects on Photorefractive Polymer Devices for Holography

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13927_sip1_m.pdf
    Size:
    4.985Mb
    Format:
    PDF
    Download
    Author
    Lynn, Brittany
    Issue Date
    2015
    Keywords
    Diffraction
    Holography
    Photorefractive Polymer
    Optical Sciences
    3D Display
    Advisor
    Norwood, Robert A.
    Peyghambarian, Nasser
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This work presents the recent advances in photorefractive polymers for use in updatable holographic displays. A model with which to predict the effect of coplanar electrode geometry on diffraction uniformity in photorefractive (PR) polymer display devices was developed. Assumptions made in the standard use cases with constant electric field throughout the bulk of the media are no longer valid in the regions of extreme electric fields present in this type of device. Using electric field induced second harmonic generation (EFISHG) observed with multiphoton microscopy, the physical response in regions of internal electric fields which fall outside the standard regimes of validity were probed. Adjustments to the standard model were made, and the results of the new model were corroborated by holographic four-wave mixing measurements. The recent development of a single mode fiber-based pulsed laser with variable pulse length, energy, and repetition rate has enabled the characterization of photorefractive devices in a previously inaccessible regime located between millisecond and nanosecond pulse recording. A pulse width range of nine orders of magnitude opens the door to device and supporting laser optimization for use in video-rate holographic display. Device optimization has resulted in 5x improvement in single pulse four-wave mixing diffraction efficiencies to 10 - 11.5 % at pulse widths ranging between 6 ns and 100 µs. The grating recording time was likewise reduced by 5x to 16 ms at an applied bias of 72.5 V/μm. These improvements support 30 Hz update rates, which combined with the 3.3 - 10 kHz repetition rate pulsed laser, pave the way for real-time updatable holographic display.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.