• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Carbonates and Other Salts in the Atacama Desert and on Mars, and the Implications for the Role of Life in Carbonate Formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13974_sip1_m.pdf
    Size:
    2.403Mb
    Format:
    PDF
    Download
    Author
    Harner, Patrick Lee
    Issue Date
    2015
    Keywords
    Carbonate
    hyperarid
    Mars
    Plant
    Stable Isotope
    Planetary Sciences
    Atacama
    Advisor
    Baker, Victor
    Quade, Jay
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The scarcity of carbonate on Mars has been difficult to reconcile with the morphologic evidence for a wet epoch in Martian history, and has weakened early interpretations of a water-rich Noachian. Limited soil carbonate from pre-Silurian Earth has created a similar conundrum, and in both instances this paradox has likely led to overreaching interpretations about past climates. To better understand the formation of carbonate on Mars, early Earth, and in present day hyperarid climates, we examined the distribution of carbonate in the Atacama Desert—a region that spans multiple climate regimes and allows us to isolate the effects of precipitation and plant cover on soil mineralogy. To better quantify the influences of vegetation on carbonate we utilized a simple one-dimensional precipitation model and simulated carbonate formation with or without plant cover under a range of relevant climatic conditions and soil morphologies. In the Atacama we found two distinct zones with only trace (<5%) carbonate: the "absolute desert" with precipitation too low to sustain plant life, and the high Andes where precipitation was significantly higher, but where the low mean annual temperature (MAT) inhibits plants. The fog-supported, low-elevation coastal "lomas" below approximately 800 meters above sea level (masl) and the higher elevations between approximately 2500-4500 masl are variably vegetated and contain abundant carbonate within the soils. Plants increase total evapotranspiration and its distribution with depth, weathering rates, and total pCO₂. Our model results show that all of these factors increase the formation of pedogenic soil carbonate. Without the influence of vegetation the diminished carbonate that is produced is flushed through the shallow soil, where it eventually precipitates in the deep vadose zone or is entrained by groundwater.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.