• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Collective Migration Models: Dynamic Monitoring of Leader Cells in Migratory/Invasive Disease Processes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13822_sip1_m.pdf
    Size:
    3.798Mb
    Format:
    PDF
    Download
    Author
    Dean, Zachary S.
    Issue Date
    2015
    Keywords
    cancer
    fluorescence
    Leader cell
    miRNA
    wound healing
    Biomedical Engineering
    3D cell culture
    Advisor
    Wong, Pak Kin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Leader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological process in multiple cell types and diseases.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.