Show simple item record

dc.contributor.advisorSmith, Nathanen
dc.contributor.authorReiter, Megan Ruth
dc.creatorReiter, Megan Ruthen
dc.date.accessioned2015-07-21T23:05:06Zen
dc.date.available2015-07-21T23:05:06Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/10150/560846en
dc.description.abstractWe present new spectroscopy and Hubble Space Telescope imaging of protostellar jets discovered in an Hαsurvey of the Carina Nebula. Near-IR [Fe II] emission from these jets traces dense gas that is self-shielded from Lyman continuum photons from nearby O-type stars, but is excited by non-ionizing FUV photons that penetrate the ionization front within the jet. New near-IR [Fe II] images reveal a substantial mass of dense, neutral gas that is not seen in Hαemission from these jets. In some cases, [Fe II] emission traces the jet inside its natal dust pillar, connecting the larger Hαoutflow to the embedded IR source that drives it. New proper motion measurements reveal tangential velocities similar to those typically measured in lower-luminosity sources (100−200 km/s⁻¹). Combining high jet densities and fast outflow speeds leads to mass-loss rate estimates an order of magnitude higher than those derived from the Hαemission measure alone. Higher jet mass-loss rates require higher accretion rates, implying that these jets are driven by intermediate-mass (~ 2−8 M⊙) protostars. For some sources, the mid-IR luminosities of the driving sources are clearly consistent with intermediate-mass protostars; others remain deeply embedded and require long-wavelength, high-resolution images to confirm their luminosity. These outflows are all highly collimated, with opening angles of only a few degrees. With this new view of collimated jets from intermediate-mass protostars, we argue that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core and the material it sweeps up are irradiated and rendered observable. Thus, the jets in Carina offer strong additional evidence that stars up to ~ 8 M⊙ form by the same accretion mechanisms as low-mass stars.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectAstronomyen
dc.titleMeasuring the Physical Properties of Protostellar Outflows from Intermediate-Mass Stars in Feedback-Dominated Regionsen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberShirley, Yancyen
dc.contributor.committeememberBieging, Johnen
dc.contributor.committeememberRieke, Georgeen
dc.contributor.committeememberSmith, Nathanen
dc.description.releaseRelease after 29-May-2016en
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineAstronomyen
thesis.degree.namePh.D.en
refterms.dateFOA2016-05-29T00:00:00Z
html.description.abstractWe present new spectroscopy and Hubble Space Telescope imaging of protostellar jets discovered in an Hαsurvey of the Carina Nebula. Near-IR [Fe II] emission from these jets traces dense gas that is self-shielded from Lyman continuum photons from nearby O-type stars, but is excited by non-ionizing FUV photons that penetrate the ionization front within the jet. New near-IR [Fe II] images reveal a substantial mass of dense, neutral gas that is not seen in Hαemission from these jets. In some cases, [Fe II] emission traces the jet inside its natal dust pillar, connecting the larger Hαoutflow to the embedded IR source that drives it. New proper motion measurements reveal tangential velocities similar to those typically measured in lower-luminosity sources (100−200 km/s⁻¹). Combining high jet densities and fast outflow speeds leads to mass-loss rate estimates an order of magnitude higher than those derived from the Hαemission measure alone. Higher jet mass-loss rates require higher accretion rates, implying that these jets are driven by intermediate-mass (~ 2−8 M⊙) protostars. For some sources, the mid-IR luminosities of the driving sources are clearly consistent with intermediate-mass protostars; others remain deeply embedded and require long-wavelength, high-resolution images to confirm their luminosity. These outflows are all highly collimated, with opening angles of only a few degrees. With this new view of collimated jets from intermediate-mass protostars, we argue that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core and the material it sweeps up are irradiated and rendered observable. Thus, the jets in Carina offer strong additional evidence that stars up to ~ 8 M⊙ form by the same accretion mechanisms as low-mass stars.


Files in this item

Thumbnail
Name:
azu_etd_13942_sip1_m.pdf
Size:
8.173Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record