We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, IPLP dissertations, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.

Show simple item record

dc.contributor.advisorChesson, Peteren
dc.contributor.authorStump, Simon Maccracken
dc.creatorStump, Simon Maccrackenen
dc.date.accessioned2015-07-21T22:11:57Zen
dc.date.available2015-07-21T22:11:57Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/10150/560856en
dc.description.abstractNatural enemies are ubiquitous in nature. In many communities, natural enemies have a major effect on the diversity of their prey. Their effects are very diverse: they can promote or undermine the ability of their prey to coexist through a variety of mechanisms. As such, an important step in understanding how diversity is maintained will be to understand how different forms of predator behavior affect prey coexistence. In this dissertation, I study how two major types of predators affect plant coexistence in two different communities. First, I study natural enemies in tropical forests, using both theory and empirical work. In tropical forests, most natural enemies are thought have a narrow host range, and be distance-responsive (i.e., mainly harm seeds and seedlings that are near adults of their main host). Previous theoretical work has shown that specialized natural enemies can maintain diversity of their prey, whether or not they are distance-responsive. However, it is unknown whether specialist natural enemies are more or less able to promote prey coexistence if they are distance-responsive. Using theoretical models, I show that distance-responsive predators are less able to maintain diversity. Additionally, I show that habitat partitioning does not interfere with the ability of distance-responsive predators to maintain diversity, even if it causes seedling survival to be highest near conspecific adults. From an empirical aspect, I studied the host range of seed-associated fungi. Soilborne microbes, such as fungi, are thought to play an important role in maintaining diversity in tropical forests. However, the microbial community itself is often treated as a black box, and little is known about which microbes are causing major effects, or how 8 specialized seed-microbe associations are. Here I use experimental inoculations to examine the host range and effect of a guild of seed-associated fungi that are thought to be mainly pathogens. I show that fungal species are differentially able to colonize different seed species, and have species-specific effects on seed germination. I show that in many cases, plant phylogeny, and to a lesser extent fungus phylogeny, are good predictors of colonization. Finally, I study how an optimally foraging granivore can promote (or undermine) coexistence amongst annual plants, using theory. Optimal foraging theory is one of the major theories for how predators behave; despite this, little is known about whether an optimally foraging predator could promote coexistence amongst a diverse community of prey. Previous models have shown than two species can coexist due to optimal foraging, but did not test whether multiple prey can coexist, nor if the effect is altered by environmental variation. Here, I show that if the predators specialize on different prey at different times, the predators can allow multiple prey species to coexist. In this case, environmental variation has little effect on the ability of predators to maintain diversity. If the predators are generalists, they cannot maintain diversity. Additionally, I show that generalist predators will create a negative storage effect, undermining coexistence.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectEcological Modelingen
dc.subjectJanzen-Connell Hypothesisen
dc.subjectNatural Enemiesen
dc.subjectOptimal Foragingen
dc.subjectPlantsen
dc.subjectEcology & Evolutionary Biologyen
dc.subjectCoexistenceen
dc.titleNatural Enemies in a Variable Worlden_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberArnold, Anne Elizabethen
dc.contributor.committeememberBronstein, Judithen
dc.contributor.committeememberWatkins, Josephen
dc.contributor.committeememberChesson, Peteren
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineEcology & Evolutionary Biologyen
thesis.degree.namePh.D.en
refterms.dateFOA2018-09-09T08:41:13Z
html.description.abstractNatural enemies are ubiquitous in nature. In many communities, natural enemies have a major effect on the diversity of their prey. Their effects are very diverse: they can promote or undermine the ability of their prey to coexist through a variety of mechanisms. As such, an important step in understanding how diversity is maintained will be to understand how different forms of predator behavior affect prey coexistence. In this dissertation, I study how two major types of predators affect plant coexistence in two different communities. First, I study natural enemies in tropical forests, using both theory and empirical work. In tropical forests, most natural enemies are thought have a narrow host range, and be distance-responsive (i.e., mainly harm seeds and seedlings that are near adults of their main host). Previous theoretical work has shown that specialized natural enemies can maintain diversity of their prey, whether or not they are distance-responsive. However, it is unknown whether specialist natural enemies are more or less able to promote prey coexistence if they are distance-responsive. Using theoretical models, I show that distance-responsive predators are less able to maintain diversity. Additionally, I show that habitat partitioning does not interfere with the ability of distance-responsive predators to maintain diversity, even if it causes seedling survival to be highest near conspecific adults. From an empirical aspect, I studied the host range of seed-associated fungi. Soilborne microbes, such as fungi, are thought to play an important role in maintaining diversity in tropical forests. However, the microbial community itself is often treated as a black box, and little is known about which microbes are causing major effects, or how 8 specialized seed-microbe associations are. Here I use experimental inoculations to examine the host range and effect of a guild of seed-associated fungi that are thought to be mainly pathogens. I show that fungal species are differentially able to colonize different seed species, and have species-specific effects on seed germination. I show that in many cases, plant phylogeny, and to a lesser extent fungus phylogeny, are good predictors of colonization. Finally, I study how an optimally foraging granivore can promote (or undermine) coexistence amongst annual plants, using theory. Optimal foraging theory is one of the major theories for how predators behave; despite this, little is known about whether an optimally foraging predator could promote coexistence amongst a diverse community of prey. Previous models have shown than two species can coexist due to optimal foraging, but did not test whether multiple prey can coexist, nor if the effect is altered by environmental variation. Here, I show that if the predators specialize on different prey at different times, the predators can allow multiple prey species to coexist. In this case, environmental variation has little effect on the ability of predators to maintain diversity. If the predators are generalists, they cannot maintain diversity. Additionally, I show that generalist predators will create a negative storage effect, undermining coexistence.


Files in this item

Thumbnail
Name:
azu_etd_14022_sip1_m.pdf
Size:
12.48Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record