• Space-Time Coding Solution to the Two-Antenna Interference Problem

      Geoghegan, Mark; Boucher, Louis; Quasonix; Bombadier Flight Test Center (International Foundation for Telemetering, 2014-10)
      In order to provide reliable line-of-sight communications, test aircraft typically use two transmit antennas to create top and bottom hemispherical patterns that cover the full range of possible aircraft orientations. The two transmit signals are normally generated by a single transmitter with the power being split between the two antennas. Although this configuration is straightforward and easy to implement, problems can arise due to the two signals constructively and destructively interfering with each other. This can result in the composite antenna pattern having periodic nulls with a depth and geometric spacing dependent upon the amplitude and phase differences of the two transmitted signals. This problem is usually addressed by either unevenly splitting the transmit power between the two antennas, or by using two separate transmitters at different frequencies. Unfortunately, these methods have drawbacks that require either system performance or cost trade-offs. This paper discusses the use of Space-Time Coding to eliminate this antenna interaction by transmitting modified waveforms that simultaneously allow for both full power transmission and single-channel operation. This approach effectively restores the nominal antenna performance, thereby resulting in better overall coverage and less pattern-induced dropouts. Telemetry performance results from recent flight testing are presented to validate the benefits of this approach.