• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Case For Hardware Overprovisioned Supercomputers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14089_sip1_m.pdf
    Size:
    2.043Mb
    Format:
    PDF
    Download
    Author
    Patki, Tapasya
    Issue Date
    2015
    Keywords
    Hardware Overprovisioning
    High Performance Computing
    Performance Optimization
    Power
    Supercomputing
    Computer Science
    Energy Efficiency
    Advisor
    Lowenthal, David K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Power management is one of the most critical challenges on the path to exascale supercomputing. High Performance Computing (HPC) centers today are designed to be worst-case power provisioned, leading to two main problems: limited application performance and under-utilization of procured power. In this dissertation we introduce hardware overprovisioning: a novel, flexible design methodology for future HPC systems that addresses the aforementioned problems and leads to significant improvements in application and system performance under a power constraint. We first establish that choosing the right configuration based on application characteristics when using hardware overprovisioning can improve application performance under a power constraint by up to 62%. We conduct a detailed analysis of the infrastructure costs associated with hardware overprovisioning and show that it is an economically viable supercomputing design approach. We then develop RMAP (Resource MAnager for Power), a power-aware, low-overhead, scalable resource manager for future hardware overprovisioned HPC systems. RMAP addresses the issue of under-utilized power by using power-aware backfilling and improves job turnaround times by up to 31%. This dissertation opens up several new avenues for research in power-constrained supercomputing as we venture toward exascale, and we conclude by enumerating these.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Computer Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.