• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Developing a Toolkit for Experimental Studies of Two-Dimensional Quantum Turbulence in Bose-Einstein Condensates

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14091_sip1_m.pdf
    Size:
    85.02Mb
    Format:
    PDF
    Download
    Author
    Wilson, Kali Elena
    Issue Date
    2015
    Keywords
    Dark-field imaging
    Microscope
    Quantum turbulence
    Superfluid
    Vortex
    Optical Sciences
    Bose-Einstein condensates
    Advisor
    Anderson, Brian P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Bose-Einstein condensates (BECs), with their superfluid behavior, quantized vortices, and high-level of control over trap geometry and other system parameters provide a compelling environment for studies of quantum fluid dynamics. Recently there has been an influx of theoretical and numerical progress in understanding the superfluid dynamics associated with two-dimensional quantum turbulence, with expectations that complementary experiments will soon be realized. In this dissertation I present progress in the development of an experimental toolkit that will enable such experimental studies of two-dimensional quantum turbulence. My approach to developing this toolkit has been twofold: first, efforts aimed at the development of experimental techniques for generating large disordered vortex distributions within a BEC; and second, efforts directed towards the design, implementation, and characterization of a quantum vortex microscope. Quantum turbulence in a superfluid is generally regarded as a disordered tangle of quantized vortices in three dimensions, or a disordered planar distribution of quantized vortices in two dimensions. However, not all vortex distributions, even large disordered ones, are expected to exhibit robust signatures of quantum turbulence. Identification and development of techniques for controlled forcing or initialization of turbulent vortex distributions is now underway. In this dissertation, I will discuss experimental techniques that were examined during the course of my dissertation research, namely generation of large disordered distributions of vortices, and progress towards injecting clusters of vortices into a BEC. Complimentary to vortex generation is the need to image these vortex distributions. The nondeterministic nature of quantum turbulence and other far-from-equilibrium superfluid dynamics requires the development of new imaging techniques that allow one to obtain information about vortex dynamics from a single BEC. To this end, the first vortex microscope constructed as part of my dissertation research enabled the first in situ images of quantized vortices in a single-component BEC, obtained without prior expansion. I have further developed and characterized a second vortex microscope, which has enabled the acquisition of multiple in situ images of a lattice of vortex cores, as well as the acquisition of single in situ images of vortex cores in a BEC confined in a weak hybrid trap. In this dissertation, I will discuss the state-of-the-art of imaging vortices and other superfluid phenomena in the University of Arizona BEC lab, as indicated by the examined performance of the quantum vortex microscope.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.