• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development, Analysis, and Testing of Robust Nonlinear Guidance Algorithms for Space Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14098_sip1_m.pdf
    Size:
    23.28Mb
    Format:
    PDF
    Download
    Author
    Wibben, Daniel R.
    Issue Date
    2015
    Keywords
    Systems & Industrial Engineering
    Advisor
    Furfaro, Roberto
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This work focuses on the analysis and application of various nonlinear, autonomous guidance algorithms that utilize sliding mode control to guarantee system stability and robustness. While the basis for the algorithms has previously been proposed, past efforts barely scratched the surface of the theoretical details and implications of these algorithms. Of the three algorithms that are the subject of this research, two are directly derived from optimal control theory and augmented using sliding mode control. Analysis of the derivation of these algorithms has shown that they are two different representations of the same result, one of which uses a simple error state model (Δr/Δv) and the other uses definitions of the zero-effort miss and zero-effort velocity (ZEM/ZEV) values. By investigating the dynamics of the defined sliding surfaces and their impact on the overall system, many implications have been deduced regarding the behavior of these systems which are noted to feature time-varying sliding modes. A formal finite time stability analysis has also been performed to theoretically demonstrate that the algorithms globally stabilize the system in finite time in the presence of perturbations and unmodeled dynamics. The third algorithm that has been subject to analysis is derived from a direct application of higher-order sliding mode control and Lyapunov stability analysis without consideration of optimal control theory and has been named the Multiple Sliding Surface Guidance (MSSG). Via use of reinforcement learning methods an optimal set of gains has been found that make the guidance perform similarly to an open-loop optimal solution. Careful side-by-side inspection of the MSSG and Optimal Sliding Guidance (OSG) algorithms has shown some striking similarities. A detailed comparison of the algorithms has demonstrated that though they are nearly indistinguishable at first glance, there are some key differences between the two algorithms and they are indeed not identical. Finally, this work has a large focus on the application of these various algorithms to a large number of space based applications. These include applications to powered-terminal descent for landing on planetary bodies such as the moon and Mars and to proximity operations (landing, hovering, or maneuvering) about small bodies such as an asteroid or a comet. Further extensions of these algorithms have allowed for adaptation of a hybrid control strategy for planetary landing, and the combined modeling and simultaneous control of both the vehicle's position and orientation implemented within a full six degree-of-freedom spacecraft simulation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.