Show simple item record

dc.contributor.authorJones, Charles H.
dc.contributor.authorWigent, Mark
dc.contributor.authorMorgan, Jon
dc.contributor.authorBeech, Russ
dc.date.accessioned2015-09-17T21:39:13Zen
dc.date.available2015-09-17T21:39:13Zen
dc.date.issued2014-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/577489en
dc.descriptionITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CAen_US
dc.description.abstractThis is the story of three projects, which use three different research funding sources, coming together to demonstrate a small, but complete, instrumentation system that advances several technologies. The Onboard Smart Sensor (OSS) project is a Small Business Innovation Research (SBIR) project that incorporates IEEE 1451.4 sensors into an existing Common Airborne Instrumentation System (CAIS) based instrumentation system. These sensors are "smart" in that they can self-identify basic information via a Transducer Electronic Data Sheet (TEDS). The Enhanced Query Data Recorder (EQDR) is being developed under the T&E Science & Technology Spectrum Efficient Technology (S&T SET) portfolio. This recorder is based on the integrated Network Enhanced Telemetry (iNET) specifications. One of the objectives of iNET is to be able to query a recorder in real-time and transfer the request across a network telemetry link. The third project provides Pulse Code Modulation (PCM) backfill to compensate for dropouts. One of the envisioned applications enabled by the iNET architecture is the ability to provide PCM displays in the control room that do not have dropouts. This is called PCM Backfill. The basic scenario is that PCM is both transmitted (as it traditionally has been via serial streaming telemetry (SST)) and recorded onboard. When dropouts occur, a request over the telemetry network is made to the recorder (the EQDR in this case) and the dropped portions of the PCM stream are sent over the telemetry network to backfill the ground display. By adding a PCM-to- Ethernet/iNET bridge, the OSS and legacy instrumentation system can provide data to both the standard PCM and to the EQDR. Combined, this mini-system demonstrates a vision of having intelligence and networking ability across the entire instrumentation system – from sensor to display.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectSmart Sensorsen
dc.subjectIEEE 1451.4en
dc.subjectiNETen
dc.subjectEQDRen
dc.subjectPCM Backfillen
dc.subjectTelemetry Network System (TmNS)en
dc.titleA Synergistic Test Flight: Smart Sensors, EQDR and PCM Backfillen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentEdwards Air Force Baseen
dc.contributor.departmentLEIDOSen
dc.contributor.departmentNVE Corp.en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en_US
refterms.dateFOA2018-09-10T09:45:46Z
html.description.abstractThis is the story of three projects, which use three different research funding sources, coming together to demonstrate a small, but complete, instrumentation system that advances several technologies. The Onboard Smart Sensor (OSS) project is a Small Business Innovation Research (SBIR) project that incorporates IEEE 1451.4 sensors into an existing Common Airborne Instrumentation System (CAIS) based instrumentation system. These sensors are "smart" in that they can self-identify basic information via a Transducer Electronic Data Sheet (TEDS). The Enhanced Query Data Recorder (EQDR) is being developed under the T&E Science & Technology Spectrum Efficient Technology (S&T SET) portfolio. This recorder is based on the integrated Network Enhanced Telemetry (iNET) specifications. One of the objectives of iNET is to be able to query a recorder in real-time and transfer the request across a network telemetry link. The third project provides Pulse Code Modulation (PCM) backfill to compensate for dropouts. One of the envisioned applications enabled by the iNET architecture is the ability to provide PCM displays in the control room that do not have dropouts. This is called PCM Backfill. The basic scenario is that PCM is both transmitted (as it traditionally has been via serial streaming telemetry (SST)) and recorded onboard. When dropouts occur, a request over the telemetry network is made to the recorder (the EQDR in this case) and the dropped portions of the PCM stream are sent over the telemetry network to backfill the ground display. By adding a PCM-to- Ethernet/iNET bridge, the OSS and legacy instrumentation system can provide data to both the standard PCM and to the EQDR. Combined, this mini-system demonstrates a vision of having intelligence and networking ability across the entire instrumentation system – from sensor to display.


Files in this item

Thumbnail
Name:
ITC_2014_14-18-1.pdf
Size:
280.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record