A Duel Compression Ethernet Camera Solution for Airborne Applications
Affiliation
Curtiss-Wright Defense SolutionsKappa Aptronics
Issue Date
2014-10
Metadata
Show full item recordRights
Copyright © held by the author; distribution rights International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
Camera technology is now ubiquitous with smartphones, laptops, automotive and industrial applications frequently utilizing high resolution imagine sensors. Increasingly there is a demand for high-definition cameras in the aerospace market - however, such cameras must have several considerations that do not apply to average consumer use including high reliability and being ruggedized for harsh environments. A significant issue is managing the large volumes of data that one or more HD cameras produce. One method of addressing this issue is to use compression algorithms that reduce video bandwidth. This can be achieved with dedicated compression units or modules within data acquisition systems. For flight test applications it is important that data from cameras is available for telemetry and coherently synchronized while also being available for storage. Ideally the data in the telemetry steam should be highly compressed to preserve downlink bandwidth while the recorded data is lightly compressed to provide maximum quality for onboard/ post flight analysis. This paper discusses the requirements for airborne applications and presents an innovative solution using Ethernet cameras with integrated compression that outputs two steams of data. This removes the need for dedicated video and compression units while offering all the features of such including switching camera sources and optimized video streams.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079