Michaud, Colonel Normand; Hollander, Sidney; Hq Air Force Satellite Control Facility (AFSCF); The Aerospace Corporation (International Foundation for Telemetering, 1982-09)
      This paper updates the previous work,¹ which described the overall telemetry and data processing capabilities of the Data System Modernization (DSM) system being developed at the Air Force Satellite Control Facility (AFSCF). Having passed the System Critical Design Review milestone, the DSM program is proceeding with the design and implementation of various elements which support both the real-time routing, processing, storage, and display of satellite telemetry data, as well as the off-line recall of raw or processed telemetry data for trend analysis and satellite operations planning. A Data Distribution Element routes data received from 13 Remote Tracking Station (RTS) antennas and other sources to dedicated telemetry processing elements located within eight Satellite Test Center (STC) Mission Control Complexes (MCCs), a Range Control Complex (RCC), and the System Development and Test Laboratory (STDL). Two types of telemetry preprocessing elements are provided: one for processing telemetry data of rates less than 32 kilobits per second (or for processing selected measurands from telemetry data of rates up to 1.024 megabits per second), and the other for processing high-rate telemetry up to 5 megabits per second. Computer programs executing within one of two large mainframe computers and a Telemetry Contact Support Equipment Group in each MCC selectively decommutate, compress, calibrate, and store the telemetry data. Once processed, the data is formatted into unique, user-defined displays for real-time or post-contact analysis. Interfaces are also provided to satellite commanding routines for the authentication or verification of commands that have been transmitted to the satellite during the contact. Additional computer programs provide the capability to extract designated measurands from the processed telemetry history files, and format them, into messages for near realtime transmission to users remotely located from the STC. A capability is also provided to interface future telemetry preprocessing equipment, such as that required to support multiple scientific payloads aboard the Space Shuttle.