• ASW-II: Advanced Satellite Workstation for the UHF Follow-On Satellite Program

      Hamilton, M. J.; Abbott, R.; Eggan, P.; Golber, D.; Hsieh, S.; Jordan, L.; Le, T.; Newcomb, R.; Sutton, S.; Ton, T.; et al. (International Foundation for Telemetering, 1992-10)
      ASW-II (Advanced Satellite Workstation, Version II) has been developed and delivered as an operational prototype in support of the Ultra High Frequency (UHF) Follow-On satellite. It provides unified and coordinated real time reception and storage of satellite telemetry, display of both real time and stored telemetry, expert-system analysis of spacecraft status, and an information navigator system that stores and presents information about the spacecraft. The architecture is modular and reconfigurable, and it provides support for multiple analyst workstations. There are several unusual aspects of the design. The entire telemetry history of the satellite is regarded as a continuum by the user, with ASW-II automatically tracking and displaying contact periods. A "streams" mechanism organizes the telemetry in such a way that the user can interactively define new derived parameters and have them presented graphically. Both real time and archived data can be displayed simultaneously. The user has very flexible controls for all display interfaces using mouse and window technologies.
    • Estimation of Tec and Range of EMP Source Using an Improved Ionospheric Correction Model

      Kim, Y. S.; Eng, R.; The Aerospace Corporation (International Foundation for Telemetering, 1992-10)
      An improved ionospheric delay correction model for a transionospheric electromagnetic pulse (EMP) is used for estimating the total-electron-content (TEC) profile of the path and accurate ranging of the EMP source. For a known pair of time of arrival (TOA) measurements at two frequency channels, the ionospheric TEC information is estimated using a simple numerical technique. This TEC information is then used for computing ionospheric group delay and pulse broadening effect correction to determine the free space range. The model prediction is compared with the experimental test results. The study results show that the model predictions are in good agreement with the test results.
    • Integrated Media Technologies for Satellite Decision Support Systems

      Sutton, S. A.; Yu, C. S.; The Aerospace Corporation (International Foundation for Telemetering, 1992-10)
      Within the Aerospace industry, the operational community is facing staff reductions, reduced skill levels, and greater complexity of space assets and space missions. This combination requires that techniques be developed that more efficiently interface a human operator with a complex computer system. Operational support of complex space systems will be greatly facilitated by better presentation of information. The presentation and distribution of complex data must evolve towards formats that are easily and naturally embraced by our sensory systems. Some of the information technologies/techniques that facilitate the presentation of complex dynamic graphical data fall into a category called integrated media. The cost of implementing integrated media (IM) architectures has decreased substantially within in the past five years. While implementation costs continue to recede, the quality and value of information that can be presented using IM technologies continues to improve. Today's IM architect can select a variety of components including digital interactive video, 3D Navigable Worlds, Multimedia Authoring Systems, standardized compressors for IM data, low cost high volume storage systems, and operating system extensions for temporal data management. Together, these components form a solid foundation for the development of a variety of compelling IM architectures. Existing satellite support and mission data processing architectures typically present tabular data for assessment. Some "advanced" systems include 2D graphical projections of the data. System experts are generally trained to correlate relationships between tabular data items. The training required to "learn" these complex relationships is tedious and time consuming. This complexity impedes productivity and as space systems increase in sophistication, these techniques for data assessment are quickly becoming antiquated. The development of a prototype decision support system explores the utility of an integrated media documentation system as part of a full-featured decision support architecture for satellite operations.