• High Performance, Real-Time, Parallel Processing Telemetry System

      Powell, Richard L.; Williamson, Gale L.; Razavian, Farhand; Friedman, Paul J.; Loral Instrumentation (International Foundation for Telemetering, 1988-10)
      Flight test and signal and image processing systems have shown an increasingly voracious appetite for computer resources. Previous solutions employed special-purpose, bit-sliced technology to supplant costly general purpose computers. Although the hardware is less expensive and the throughput greater, the expense to develop or modify applications is very high. Recent parallel processor technology has increased capabilities, but the high applications development cost remains. Input/output (I/O) such as intermediate mass storage and display has been limited to transfer to general purpose or attached I/O computers. The PRO 550 Processing and Storage Subsystem of the System 500 was developed to provide linearly expandable, programmable real-time processing and an interface to distributed data acquisition subsystems. Each data acquisition subsystem can acquire data from multiple telemetry and other real-time sources. Processing resources are provided by one or more 8 MIPS (20 MFLOPS peak) processor modules, which utilize an array of predefined algorithms, algorithms specified by algebraic notation, or developed via high level languages (C and Fortran). Setup and program development occur on an external, general purpose color graphics workstation that is connected to the subsystem via an Ethernet network for command, control, and resultant data display. High-performance peripherals and processors communicate with each other via a 16-MHz broadcast bus, the MUXbus II, where any or all devices can acquire data elements called tokens. A token is a single MUXbus II word of 32 bits of data and a 16-bit tag to identify the word uniquely to the acquiring modules. The output of each device to the bus can be one or more tokens, but each device captures the bus to insert a single token. This ensures all devices receive equal priority and the MUXbus II is maximally utilized. This multiple instruction, multiple data (MIMD) architecture automatically schedules and routes data to processors or to I/O modules without control processor overhead. Traditional peripherals and administrative functions utilize the second subsystem bus, which is a traditional VMEbus. It controls the high performance devices while permitting the utilization of standard off-the-shelf controllers (e.g., magnetic tape, Ethernet, and bus controllers) for less demanding I/O tasks. A dedicated Bridge Module is the gateway for moving data between bus domains.
    • Telemetry Chart Recording Via Direct Digital Link

      Smith, Grant M.; Alexander, James H.; Astro-Med, Inc. (International Foundation for Telemetering, 1988-10)
      Mission safety and cost-efficiency concerns have resulted in a resurgence of interest in real-time strip chart recorders. But conventional recorder technologies require inordinate maintenance and daily calibration. Attempts at strip chart emulation involving costly dedicated microcomputers and CRT's have failed, because the chart itself is not real-time, a basic requirement. The concept of an inexpensive, direct digital link to a telemetry processing computer (VAX, e.g.) is discussed. A thorough examination of real-time monitoring of critical, non-repeatable data is presented. Objectives: An automated, turn-key telemetry data system. Reduce the routine maintenance required by conventional recording systems; eliminate the need for digital-to-analog converters (DAC's); and improve the efficiency of range personnel and the integrity of recorded data.
    • A New Multi-Mission Data System for Space Flight Support Through the 1990's

      Gainsborough, A. J.; California Institute of Technology (International Foundation for Telemetering, 1988-10)
      Individual data systems for flight projects at JPL are in the process of being replaced by the single new Space Flight Operations Center (SFOC) that is designed to support multiple missions. The design provides a baseline system that supplies a common set of functions needed by every mission. Low cost adaptations of the baseline with any needed missionspecific additions are made for each mission. The SFOC is being developed in phases. The current phase provides baseline functions for downlink spacecraft telemetry processing with the necessary adaptations and additions for the downlink launch support in April 1989 of the Magellan mission to Venus. The SFOC will be completed in 1991, at which time the planned support includes both downlink and uplink processing for a projected six mission set.
    • A New S-Band FM Telemetry Transmitter

      Fengden, Lou; Beijing Research Institute of Telemetry (International Foundation for Telemetering, 1988-10)
      This paper describes the design, test and the analysis of the test results of a new type S-band FM telemetry transmitter. Compared with the modulator adopting conventional fundamental crystal direct modulation, the transmitter which adopts UHF fundamental crystal direct modulation has a comparatively better modulation characteristics and a higher center frequency stability. The test results show that the deviation sensitivity of the transmitter is up to 400KHz/Vrms, frequency response is DC~200 KHz, total harmonic distortion is 3% and the center frequency stability is ten to the minus fifth power within the range of - 30~+70°c. Because of the high operating frequency of the modulator, the complicacy of the frequency multiplier has been requced, design of circuitry simplified and harmonic and spurious outputs has been improved to a great extent.
    • Fiber-Optic Local Area Network for Real-Time Telemetry

      Bartley, Tom; Loral Instrumentation (International Foundation for Telemetering, 1988-10)
      For years, standard telemetry decommutators have proven the practical effectiveness and other advantages of using a data-driven (or data flow) broadcast bus for collecting, merging, and distributing continuous flow, real-time data. Bus length constraints have limited the use of the wideband broadcast bus to within a single chassis or closely mounted multiple chassis. Standard fiber-optic interfaces now make it possible to extend a real-time, greater than 5 million word/sec tag and data broadcast bus over kilometers at costs comparable to computer local area networks (LANs). Other advantages of this type of LAN include: no software protocol or handshaking, great flexibility in widely distributed processing and data base management, data security, and readily available off-the-shelf products. This paper discusses design considerations for conceptual networks, shows a sample design based on standard products, and suggests opportunities for product development for various types of network nodes. Also discussed are the implications to distributed processing and merging of real-time continuous data streams into the more blocked environment of general purpose computer processing and data base management.
    • Spacecraft Telemetry Tracking State of the Art and Trends

      Mayer, Gerhard; DFVLR Applied Data Syst. Div. (International Foundation for Telemetering, 1988-10)
      Telemetry Tracking is a method of obtaining trajectory information regarding any flying body such as an aircraft, missile, satellite, balloon or a deep space probe which signals or "marks" its flight position by an electromagnetic radiating source. In a trade-off of costs it is an attractive way to combine Telemetry, Tracking and Command (TTC) facilities into one integrated system on board a spacecraft and with the ground receiving and tracking facilities. The present state of the art of Distance Measuring Equipment (DME) and Angle Measuring Equipment (AME) integrated with telemetry systems is reviewed. The further development will be mainly stimulated by the technology evolution of frequency and time reference sources, microwave components and information processing systems. An attempt is made to analyse which way the growth of technology will influence various system parameters.
    • Characteristics and Uses of Multipoint Radio in the 950 MHz Telemetry Band

      Ziemienski, Bruce V.; City of Fresno, California (International Foundation for Telemetering, 1988-10)
      Data communications is one of the fastest growing industries today. Many see data communications as one key to increasing workforce productivity. Communications circuits are becoming increasingly expensive especially if wireline is used. A simple solution to this problem is utilized radio. With the advent of the new Multi- Point distribution Service on the 950 MHz Microwave band, simple and relatively inexpensive solutions to data communications distribution has been solved. This paper will explore this new service and its uses as related to data communications.
    • Reliable Solid State Data Storage Device for Spacecraft T&C Subsystems

      Capots, L.; Chitty, R.; Ameti, A.; Mitchell, W.; Fairchild Space Company (International Foundation for Telemetering, 1988-10)
      Fairchild Space Company, a division of Fairchild Industries, has developed an advanced data recorder based exclusively on the use of Solid State circuitry for the recorder memory. This paper describes the recorder, its development, the engineering considerations for long-term mission life, methods for minimizing size, weight and power, and the flexibility of the recorder to accommodate a number of different mission requirements. Unlike the more traditional mass storage devices for spacecraft, which use rotating memory, the Solid State Recorder (SSR) uses a true random access memory. This feature has resulted in a multi-mode storage device, which can greatly reduce the complexity of spacecraft data systems. Today's spacecraft have large numbers of sensors and high rate instruments which are making the data flow problem much more difficult to handle. Bottle necks also referred to as "data fusion" have become a serious problem for systems engineers, for which the SSR may represent an effective solution. The paper concludes with a discussion of some system applications which illustrate the broad range of possible SSR applications, and the development status.
    • Sensing of Irregularities on Fast Moving Surfaces by Microwaves and Millimeterwaves

      Ishii, T. Koryu; Marquette University (International Foundation for Telemetering, 1988-10)
      Fine cracks and irregularities on a fast moving conducting surface were detected by the use of microwave and millimeter wave radio responder techniques. The interrogation angle was restricted to an oblique incidence angle less than ±0.5 degree from the surface. The fast moving conducting surface was surrounded by both fast moving and stationary reflective conducting structures. Experimental methods and results from a fine crack 0.1 mm wide, 0.9 mm deep, and 25 mm long on a conducting surface travelling with a speed of 20.23 m/s and measured at 10.525 GH(z) and 73 GH(z) are presented. The reflection-type microwave radio responder consisted of a 10.525 GH(z) 50 mW Gunn diode cw transmitter, a circulator, and a horn antenna used as the interrogator. The receiver in the same responder consisted of the same horn antenna, the circulator and detector diode. The detector diode output was observed with a Norland 3106R digital memory oscilloscope. A reflex kylstron VA 250 was used as the transmitter signal source for the millimeter wave responder. There was a distinct difference between the responder output patterns with uncracked and cracked surfaces. It is therefore possible to use this type of responder for hair-line crack detection of fast moving conducting surfaces. It was also found that this type of radio responder can detect the surface irregularity even before the hairline crack actually occurs.
    • Ruggedized Television Compression Equipment for Test Range Systems

      Gattis, Sherri L.; Naval Weapons Center (International Foundation for Telemetering, 1988-10)
      The Wideband Data Protection Program was necessitated from the need to develop digitized, compressed video to enable encryption.
    • A Charge-Balancing Incremental Analog to Digital Converter for Instrumental Applications

      Zrilić, D.; Skendzić, D.; Pajavić, S.; Ghorishi, R.; Fu, F.; Kandus, G.; Boston University (International Foundation for Telemetering, 1988-10)
      A switched-capacitor technique for realization of one bit serial A/D converter is presented. A conversion accuracy that is higher than 15 bits can be expected from its integrated realization. Results of simulation are presented. It is shown that arithmetic operations on bit serial signals are possible. Using arithmetic operations on delta-modulated signals, it is possible to build inexpensive options necessary in instrumentation.
    • Static RAM Data Recorder for Flight Tests

      Stoner, D. C.; Eklund, T. F. F.; Sandia National Laboratories (International Foundation for Telemetering, 1988-10)
      A static Random Access Memory (RAM) data recorder has been developed to recover strain and acceleration data during development tests of high-speed earth penetrating vehicles. Bi-level inputs are also available for continuity measurements. An iteration of this system was modified for use on water entry evaluations.
    • Trends in Telemetry Systems

      Strock, O. J. (Jud); Fairchild Weston Systems, Inc. (International Foundation for Telemetering, 1988-10)
      This tutorial is an examination of trends in telemetry systems as we approach the 1990s. . . a look at where we are, and where we appear to be headed in the near future. Historically, the typical change in our technology is brought about by one of three conditions. First, users demand performance improvements in order to facilitate their analysis of test programs. Second, manufacturers make performance improvements because continuing advances in component technology enable them to offer improved products for telemetry applications. Third, developments in non-telemetry applications, both hardware and software, are adapted to our needs by system designers. We will see the results of all three conditions as we look at trends in telemetry systems.
    • Application of Digital Video in Modern Telemetry Systems

      Druif, David; LORAL/CONIC (International Foundation for Telemetering, 1988-10)
      This paper addresses the system issues of applying digital video to modern telemetry systems and problems. Comparison of typical link budgets, block diagrams, as well as improvements and limitations for both analog and digital video are included. Encryption issues are covered from a generic unclassified point of view.
    • Applications of Measurement Instrumentation for Advanced Launch Vehicles of the 90's Using MicroDACS Technology

      Martin, Robert D.; SCI Technology Inc. (International Foundation for Telemetering, 1988-10)
      Using MicroDACS* SMT ASIC technology, an instrumentation and control system is designed to meet the low cost, fault tolerant, data handling requirements for advanced launch vehicles of the 901's. Advanced launch vehicles will require low cost autonomous, and reliable measurement circuits. This paper describes many measurements and signal conditioning applications for various types of analog transducers needed to insure missile health and safety on boosters of the future.
    • The Searching Method of Optimum Frame Synchronization Codes Based on the Synthetic Optimum Criterior

      Jie, Cao; Qiu-Cheng, Xie; Nanjing Aeronautical Institute (International Foundation for Telemetering, 1988-10)
      This paper gives a new searching criterior of optimum or suboptimum frame sync codes that escapes from unnecessary calculation and presents a searching method. It has a great improvement on existing methods (exhaustion technique, and so on) and the computing time is decreased by 1~2 order of magnitudes. Finally, the optimum frame sync codes with the length n from 7 to 32 are given.
    • High Speed Data Acquisition Systems

      Talmadge, Richard D.; Radmand, Mansour; Wright-Patterson Air Force Base; Aydin Vector Division (International Foundation for Telemetering, 1988-10)
      Air Force systems testing today requires that more and more data be acquired to a higher degree of accuracy and in fewer flights. This necessitates a new approach to dynamic data acquisition system design. In the past data acquisition organizations used either direct or FM recording techniques of one sort or another to acquire data for post test processing. This paper will outline the direction that this organization is taking to reduce the size of the installed system as well as the time and money required to maintain the system during the testing process. The system discussed provides a capability to acquire both static (DC) data and dynamic data up to 10,000 Hertz and has a dynamic range in excess of 120 dB.
    • Practical Decom List Switching

      Devlin, Steve; Aydin Monitor Systems (International Foundation for Telemetering, 1988-10)
      With more complex vehicle designs, the frequency and number of measurements contained in telemetry data streams has dramatically increased. One way of improving the use of bandwidth is to change the sample rate, quantity, or type of measurements dynamically. A telemetry front end must be programmable to handle different formats. In a front end that decommutates and routes measurements, a decom list is a control program, which defines the location, size, orientation, and identity of the measurements. To deal with dynamic format changes, a telemetry front end must be able to switch between decom lists. A practical approach to decom list switching must address the needs of error avoidance, packet switching, and the location of switching keys in any portion of the format. Switching between formats should not be restricted to a preprogrammed sequence, but should allow multiple destinations from a particular decom list. A practical and flexible implementation of decom list switching is detailed along with an explanation of how this implementation solves a variety of decommutation problems.
    • Bridging The Gap Between Telemetry and the PC

      Nelson, Wade; Shurtleff, Diana; Loral Instrumentation (International Foundation for Telemetering, 1988-10)
      The explosive use and extensive development of software and hardware for the IBM PC and PC Clones over the past few years has positioned the PC as one of many viable alternatives to system designers configuring systems for both data acquisition and data analysis. Hardware abounds for capturing signals to be digitized and analyzed by software developed for the PC. Communication software has improved to where system developers can easily link instrumentation devices together to form integrated test environments for analyzing and displaying data. Telemetry systems, notable those developed for lab calibration and ground station environments, are one of many applications which can profit from the rapid development of data acquisition techniques for the PC. Recently developed for the ADS100A telemetry processor is a data acquisition module which allows the system to be linked into the PC world. The MUX-I/O module was designed to allow the PC access to telemetry data acquired through the ADS 100A, as well as provide a method by which data can be input into the telemetry environment from a host PC or equivalent RS-232 or GPIB interface. Signals captured and digitized by the ADS100A can be passed on to the PC for further processing and/or report generation. Providing interfaces of this form to the PC greatly enhances the functionality and scope of the abilities already provided by the ADS100A as one of the major front-end processors used in telemetry processing today. The MUX-I/O module helps "bridge the gap" between telemetry and the PC in an ever increasing demand for improving the quantity and quality of processing power required by today's telemetry environment. This paper focuses on two distinct topics, how to transfer data to and from the PC and what off-the-shelf software is available to provide communication links and analysis of incoming data. Major areas of discussion will include software protocols, pre vs post processing, static vs dynamic processing environments, and discussion of the major data analysis and acquisition packages available for the PC today, such as DaDisp and Lotus Measure, which aid the system designer in analyzing and displaying telemetry data. Novel applications of the telemetry to PC link will be discussed.
    • Telemetry Data Processing: A Modular, Expandable Approach

      Devlin, Steve; Aydin Monitor Systems (International Foundation for Telemetering, 1988-10)
      The growing complexity of missle, aircraft, and space vehicle systems, along with the advent of fly-by-wire and ultra-high performance unstable airframe technology has created an exploding demand for real time processing power. Recent VLSI developements have allowed addressing these needs in the design of a multi-processor subsystem supplying 10 MIPS and 5 MFLOPS per processor. To provide up to 70 MIPS a Digital Signal Processing subsystem may be configured with up to 7 Processors. Multiple subsystems may be employed in a data processing system to give the user virtually unlimited processing power. Within the DSP module, communication between cards is over a high speed, arbitrated Private Data bus. This prevents the saturation of the system bus with intermediate results, and allows a multiple processor configuration to make full use of each processor. Design goals for a single processor included executing number system conversions, data compression algorithms and 1st order polynomials in under 2 microseconds, and 5th order polynomials in under 4 microseconds. The processor design meets or exceeds all of these goals. Recently upgraded VLSI is available, and makes possible a performance enhancement to 11 MIPS and 9 MFLOPS per processor with reduced power consumption. Design tradeoffs and example applications are presented.