• Output SNR of an FM Discriminator with Non-Ideal Limiting

      Schilling, D. L.; Refi, J. J.; Polytechnic Institute of Brooklyn; Bell Telephone Laboratories (International Foundation for Telemetering, 1968-10)
      The effect of abrupt-limiting on the output of a frequency discriminator has been treated thoroughly by Middleton. This paper considers the case of smooth band-pass limiting both for the simple differentiator and for the balanced discriminator. The error function is used as a model for the smooth limiter. The idealness of the limiter is related to the quantity "μ" - the limiting hardness. The analysis reveals that for a balanced discriminator, the output signal-to-noise ratio can be made largely immune to changes in "μ". However, for the unbalanced discriminator, the signal-to-noise is not only appreciably "μ" dependent, but also a function of carrier frequency.
    • The Effect of Coding on Rate Equalization of Digital Channels

      Butman, S.; Jet Propulsion Laboratory (International Foundation for Telemetering, 1968-10)
      The pulse stuffing technique for rate equalization of digital channels is generalized in this article to the stuffing of a sequence of pulses (a word), which can be coded. The extra capacity needed for signaling the stuffed word decreases exponentially with the number of pulses in it, and may, in fact, be eliminated at a negligible increase in the error rate of the channel.
    • A Double Sideband-Quadrature Carrier Multiplex Telemetry System

      Gutwein, Joseph M.; Annese, Jerald F.; ADCOM (International Foundation for Telemetering, 1968-10)
      A novel FDM telemetry technique was developed consisting of a double sideband-quadrature carrier multiplexing system (DSB-QCM). Each subchannel in the DSB-QCM system carries two completely overlapping DSB data signals, one double-sideband modulated on the subcarrier itself, and the other on a quadrature version of the subcarrier. Demodulation with cophasal and quadrature subcarriers enables simultaneous data extraction from each channel within acceptable distortion levels. The feasibility and practicability of such a DSB-QCM telemetry system is discussed in this paper. Crosstalk levels between the quadrature multiplexed channels were measured and guardband requirements between adjacent channels were assessed for a modem comprised of three pairs of DSB-QCM channels. Crosstalk levels between uniformly loaded DSB -QCM channels were below 2% and guardband requirements equivalent to conventional DSB systems were observed. The DSB-QCM performance was also examined as a function of input SNR with two competing subcarrier synchronization methods. Subcarrier synchronization by means of synthesized reference tones coherently derived from a single pilot was demonstrated to be superior in The presence of noise to a channel reference approach in which each data channel must synchronize its own subcarrier. The major conclusion from this investigation is that DSB-QCM/FM telemetry combines the advantages of both SSB/FM and DSB/FM by accommodating as many data channels as SSB/FM but with low distortion data processing and the dc data response characteristic of DSB/FM.
    • Performance of a Bandwidth Limited PCM/PSK/PM Telemetry System

      Miller, G. E.; Jennings, V. A.; The Boeing Company (International Foundation for Telemetering, 1968-10)
      This report investigates the use of coherent and non-coherent FM/PM detectors as applied to recovery of PCM telemetry data. Given a PCM Manchester II encoded FM carrier, a theoretically perfect bit detector was derived. A laboratory prototype was built and evaluated under simulated threshold conditions. Agreement with theory was obtained within 1.50 db, using a coherent demodulator without a limiter stage. Amplitude and phase characteristics are shown in addition to the filter circuit and component values. Several commercial demodulators are compared against the theoretical model. The results of the comparisons are discussed, and recommendations concerning deficient areas are submitted.
    • A PCM-Telemetry System for Sounding Rock Payloads

      Hommel, R.; Deutsche Versuchsanstalt für Luft- und Raumfahrt e.V. (International Foundation for Telemetering, 1968-10)
      Complex sounding rocket payloads require on-board data processing and channel capacity which frequently exceed the capability of the standard FM-FM-telemetry system. To obtain the full benefit of the accuracy and information density of sounding rocket experiments a PCM-telemetry system has been developed which provides sufficient flexibility in the choice of channel number, bit rate, time resolution, and accuracy. A first version with Bo channels for scientific data, and 62 channels for technical data will be flown on board of five Black Brants from the Esrange in Kiruna.
    • Preliminary Experiment Results from the Omega Position Location Equipment (OPLE)

      Horiuchi, H. S.; NASA/Goddard Space Flight Center (International Foundation for Telemetering, 1968-10)
      The analysis of data taken during the fixed platform, road and aircraft tests indicates that the OPLE system can locate a fixed or moving platform with reasonable accuracy. During the fixed platform interrogations, it was found that the error in the OPLE-derived position estimates were consistently correlated with the error in the position estimates of the OCC as derived from the local Omega monitors; that is, latitude and longitude errors of corresponding magnitudes were received at the OCC both from the PEP's and from the Omega receiver located at the control center. Based on the data analyzed thus far for the fixed platforms, the overall contribution to the mean position error by the OPLE equipment ranges between 50 to 400 feet in latitude and 300 to 500 feet in longitude. The results have shown that the longitude errors are consistently greater than the latitude errors. The results of the road test indicated that a moving vehicle could be located with good accuracy. Men the OPLE-derived position estimates were adjusted for the navigational errors of the Omega system, the vehicle was located to within 1500 feet of the roadway. The results of the aircraft tests showed that an airborne platform moving at 160 knots could be located with reasonably good accuracy. During the daytime test, the position of the aircraft could be placed to within approximately 5 miles of GSFC. During the evening tests, the position of the aircraft was located to within 10 miles of the estimated center of the aircraft's circular flight pattern, the position being consistently to the east of the center of the circle. During these evening tests, the position of the OCC was calculated to be 4 miles east of its actual location.
    • An Adaptive Airborne VHF/UHF Transmitter System

      Franke, E. B.; Trover, W. F.; Teledyne Telemetry Company (International Foundation for Telemetering, 1968-10)
      The impending 1970 change-over of telemetry RF links from VHF (215- 265 MHz) to UHF (1435-1545 and 2100-2200 MHz) requires a quantum jump in the state-of-the-art of solid-state transmitters. This problem is compounded by the fact that in certain instances, especially for spacecraft and special applications, there is still a need for transmitters at many different VHF and lower UHF frequencies between 136 MHz and 1 GHz. Therefore, the optimum RF product line is represented by a modular transmitter system composed of fundamental building blocks which will permit the assembly of transmitters capable of producing from 50 watts at 136 MHz to 1/2-watt at 5500 MHz with minimal variations in the over-all mechanical configuration. This adaptive transmitter system must also be able to provide optional features such as power-to-case ground isolation, modulation-to-power ground isolation, turn-on current limiting, either frequency of phase modulation remote turn-on capabilities, and internal telemetry functions of temperature, RF power, dc voltage. Additional design requirements for such a transmitter system are wideband frequency response and carrier deviation capabilities so that the transmitter may handle real-time video signal for use with television, radar and infra-red transmission systems. This paper describes the design alternatives and the conceptual approaches that were used in development of such an adaptive transmitter system. Performance data presented is typical of that achieved from L-band and S-band units.
    • Cracked Solder Joint Mechanism in Discrene Component Assemblies

      Estes, H. P.; Theobald, P. E. (International Foundation for Telemetering, 1968-10)
      Solder joint cracking has occurred in assemblies where discrete part subassemblies are fabricated on Printed Circuit Boards and conformal coating is applied to the sub-assembly. The objective of the investigation were to determine the extent and seriousness of the problem, to determine the cracking mechanism, and to provide engineering and process information to eliminate the problem. The analysis and test results indicate that many factors influence the strength of a solder joint and the ultimate crack that develops. Contamination by gold products and other foreign materials can significantly affect solder characteristics. Aging and temperatures experienced in the normal operating range of certain equipment adversely affects the strength of the solder materials. Conformal coating between the discrete part and the Printed Circuit Board is a major contributor to the cracking mechanism. Transistor assemblies using a Spacer under the TO-5 enclosure with Kovar Lead Material and completely covered with conformal coating have a high incidence of cracked solder joints. This condition is caused by the mis-match of coefficients of expansion between the Kovar Lead and the conformal coating.
    • Design of Airborne S-Band Telemetry Antennas

      Weinschel, H. D.; New Mexico State University (International Foundation for Telemetering, 1968-10)
      The change from VHF to UHF for telemetry requires new antenna designs rather than the scaling of the antennas now used for the UHF frequencies. The reason for this is that the vehicle dimensions at UHF, in particular the rocket diameters, will be of the order of several wavelengths. A common method to obtain a nearly omnidirectional radiation pattern at VHF is to mount two or four element antenna arrays on the vehicle. This is sufficient since the wavelength for the presently used telemetry frequencies is approximately 50 inches and the array spacing rarely exceeds a half wavelength. The radiation pattern from such closely spaced unit radiators exhibits only minor scalloping which does not present a problem in the data acquisition. At the UHF frequencies, the array spacing, in wavelength, is increased by a factor of ten resulting in an interference pattern with narrow lobes and deep nulls. If the mechanical design limitations permit it, it is possible to design unit radiators which will give cardioid or nearly omnidirectional patterns for a single polarization component. Two such antennas are described. They are the axially mounted turnstile and the radial waveguide antennas.
    • Single RF Carrier Time-Sharing by Remote Locations

      Stadler, S. L.; United Aircraft Corporation (International Foundation for Telemetering, 1968-10)
      It is of vital national interest to know the essential real-time factors involved in the evaluation of an air attack versus a ground defense. This need led military planners to request the development of a computerized system to determine the victors and the vanquished in a war game on a par with an actual combat situation. From an engineering point of view, the evaluation system would permit all "combatants" full scope of operation and would not introduce, of itself, any "artificialities" into a complexity of split-second duels taking place over a wide geographical area. This paper discusses a unique time-division telemetry technique that was designed to resolve the data and control flow to and from remote locations, in this case, tactical aircraft. The actual system that evolved from this approach transfers all "aim and fire" events, coming from a group of aircraft engaged on a "mission", to a central communications and data processing facility. The control in the form of timing synchronization is sent from the facility to all aircraft. It should be noted that this time-sharing method could not utilize classical time-division multiplexing, e.g., PAM or PDM, since the test elements were all physically separate from one another (up to 120 miles). Preliminary test data is presented herein as an indication of the validity of this new technique. The paper concludes with a brief description of this method as applied to air and water pollution control and other posited applications.
    • A Data Recording System for Deep Sea Logging

      Ben-Yaakov, S.; UCLA (International Foundation for Telemetering, 1968-10)
      A data recording-reproducing system has been developed in conjunction with an oceanographic in situ multi-sensor probe for measuring chemical properties. The recording unit is built around a deck of a single channel, entertainment-type miniature magnetic tape recorder. The tape speed was reduced to 0.125 ips by slightly modifying the original speed control, which results in four hours' continuous recording. The recording unit incorporates a frequency counter to convert the input frequency signal to a serial, four digits, BCD code. The code is recorded twice per frame by chopping the bits with a 250 Hz signal. The frame lasts 5 seconds after which a command is sent to the main unit advancing the multiplexer one step ahead. The reading unit consists of a second small tape recorder and a decoding circuit. The tape is played back 15 times faster than the recording speed. Synchronization and bits identification are based on counting the (original) 250 Hz chopping signal. This eliminates the problem due to wow flutter and non constancy of tape speeds. The serial BCD code is converted to a parallel code to facilitate printing or tape-to-tape transfer, for computer compatibility. The use of non-expensive tape decks as well as integrated circuit modules reduces markedly the price of the system without compromising on accuracy or reliability.
    • Wideband PCM-FM Bit Error Probability Using Discriminator Detection

      Hayes, J. J.; Chen, C. H.; Kubicki, W. J.; AVCO Corp.-MSD (International Foundation for Telemetering, 1968-10)
      The expression for bit probability of PCM/FM is derived for a receiver with an IF bandwidth equal to or greater than the data rate, limiter-discriminator detection; followed by a post-detection filter with bandwidth equal to the data rate. The optimum deviation ratio is shown to be essentially constant regardless of the IF bandwidth-to-data rate ratio and system performance is shown to degrade when this ratio is greater than unity. Pre-modulation filtering of the transmitted PCM data is experimentally tested and the analytical results are shown to good agreement with experimental data.
    • The Effects, Measurement, and Analysis of Flutter in Instrumentation Recorders

      Moore, Laurence; Micom, Inc. (International Foundation for Telemetering, 1968-10)
      As instrumentation recorders are improved to provide wider bandwidths and shorter recorded wavelengths, the effects of flutter and attendant time base distortion severely limit the potential for accurate recording and retrieval of data. The effects of flutter on typical classes of data is given and the measures necessary to determine flutter with high accuracy shown. Since the degrading effects of flutter depend upon the application and the characteristics of the flutter, means of analyzing flutter both in the time domain and in the frequency domain are necessary. A self contained instrument for accurate measurement and analysis of flutter sensitive enough for the most sophisticated transports is described, as are necessary conditions for its use.
    • Presampling Filtering

      McRae, D. D.; Davis, R. C.; Radiation Incorporated (International Foundation for Telemetering, 1968-10)
      Sampled data systems often employ lumped-parameter lowpass filters both prior to and following the sampling operation. The purpose of these filters is to reduce the error between the input and output data waveforms. The present paper discusses the effect of presampling filters on the rms interpolation error for two types of sampled data systems and gives some thumb rules for choosing such filters. The two types of sampled data systems considered are: (1) one employing only zero-order hold interpolation, and (2) one employing zero-order hold followed by the best lowpass lumped-parameter interpolation filter. The resulting expressions for rms interpolation error for sampled data systems employing lumped-parameter filters from a detailed time domain analysis are given.
    • The Sun as a Calibration Signal Source for L- and S-Band Telemetry

      Hedeman, W. R., Jr.; Aerospace Corporation (International Foundation for Telemetering, 1968-10)
      One of the major problems confronting a telemetry receiving station is that of self calibration, particularly an end-to-end calibration, on a frequent and routine basis. For this purpose an external signal source is needed, preferably one in the far field of the antenna. The sun is such a source for L- and S-band systems--its usefulness depends on knowledge of its emission at the time it is used, since it is a variable source. Examined here are the characteristics of the sun as a source of electromagnetic energy in the 10 centimeter region, and the methods by which it could be used to determine receiving system noise temperature. Limitations of the methods are also described.
    • Miniature Power Amplifier for Telemetry Transmitters

      Winkler, R. H.; Amelco Semiconductor (International Foundation for Telemetering, 1968-10)
      There is continuing emphasis to reduce the size and weight of telemetry transmitters and to increase the frequency at which the power is generated. An approach to achieve this goal is discussed. A power amplifier stage designed specifically for a telemetry transmitter is described. It produces 1 watt output at 500 MHz with 7-10 db of gain. Typically it is midpoint in a series of similar amplifier stages. An extraordinarily small size is achieved by using microstrip transmission lines on an alumina substrate. The dielectric constant of alumina is relatively high; which makes the transmission lines relatively short. Furthermore, the judicious use of lumped capacitors results in a further foreshortening of the transmission lines. The transistor die is attached directly to the microstrip transmission line. This minimizes any stray inductances and makes the circuit reproducible and broadband. This amplifier is composed of three basic component types: 1) a transistor 2) four microstrip transmission lines, and 3) three lumped capacitors. Of special importance is the fact that the entire amplifier, that is, the transistor plus the matching network, is enclosed inside a hermetic envelope. The terminals are 50 ohm microstrip input and output. The hermetic envelope is less than 1.100" x .830" x .085". Complete with a heat sink the unit is no higher than .150". Useful design information for this type of amplifier is presented.
    • Results of the UHF Telemetry System R & D Flight Tests at White Sands Missile Range

      Chin, Ball; Hamilton, James W.; White Sands Missile Range (International Foundation for Telemetering, 1968-10)
      This paper describes results of UHF telemetry R&D tests conducted at White Sands Missile Range (WSMR), New Mexico. UHF telemetry problems, such as multipath and target scintillation, are discussed. Several recommendations which may improve the reliability of telemetry data transmission at UHF frequencies are made based on experience and data gained from many UHF telemetry tracking operations.
    • Miniature Current Discontinuity Device Antennas

      Bittner, Burt J.; Kaman Nuclear (International Foundation for Telemetering, 1968-10)
      Flush and semi-flush, Current Discontinuity2 antennas have been developed for VHF and UHF frequencies that exhibit good efficiency and minimum structural disturbance. Typical antennas are .02 wavelengths high, 1/8th inch at "L" band. An airborne, electronically steerable array for VHF, satellite applications is described.
    • Errors Resulting from Channel Filters and Adjacent Channel Crosstalk in DSB/SC Telemetry Systems

      Salter, W. E.; Frost, W. O.; Sperry-Rand Corporation; Marshall Space Flight Center (International Foundation for Telemetering, 1968-10)
      The waveform distortion resulting from adjacent channel crosstalk and from amplitude and phase nonlinearity in channel filters limits the minimum channel spacing, and hence the bandwidth utilization efficiency of a double sideband/suppressed carrier (DSB/SC) telemetry link. The paper presents results of an analysis defining the minimum achievable mean-square error when Butterworth filters are used in the DSB demodulator/demultiplexer. With data inputs consisting of band-limited random signals, solutions are given for various combinations of data order, filter order, channel spacing, and filter cut-off. The trade-off between waveform distortion and channel spacing is illustrated, and optimum locations for the filter cut-off are defined. The irremovable error based on Weiner optimum filter theory is presented as an interesting basis for comparison.
    • A High-Rate Telemetry System for the Mariner 1969 Mission

      Tausworthe, R. C.; Easterline, M. F.; Spear, A. J.; California Institute of Technology (International Foundation for Telemetering, 1968-10)
      This presentation deals with a multi-mission deep-space telemetry system, its rationale, analysis, development into hardware, and its subsequent planned application to an actual spacecraft mission whose preparation is now in progress. The spacecraft system encodes raw binary data into a comma-free, bi-orthogonal code which antipodally modulates a square-wave subcarrier, which in turn phase-modulates the downlink carrier. There is no separate signal for subcarrier, word, or symbol sync; all transmitted sideband power is thus available for data transmission.