• Bit Error Problems with DES

      Loebner, Christopher E. (International Foundation for Telemetering, 1993-10)
      The Data Encryption Standard (DES) was developed in 1977 by IBM for the National Bureau of Standards (NBS) as a standard way to encrypt unclassified data for security protection. When the DES decrypts the encrypted data blocks, it assumes that there are no bit errors in the data blocks. It is the object of this project to determine the Hamming distance between the original data block and the data block after decryption if there occurs a single bit error anywhere in the encrypted bit block of 64 bits. This project shows that if a single bit error occurs anywhere in the 64-bit encrypted data block, a mean Hamming distance of 32 with a standard deviation of 4 is produced between the original bit block an the decrypted bit block. Furthermore, it is highly recommended by this project to use a forward error correction scheme like BCH (127, 64) or Reed-Solomon (127, 64) so that the probability of this bit error occurring is decreased.
    • A Rugged, Low-Cost, Advanced Data-Acquisition System for Field Test Projects

      Simms, D. A.; Cousineau, K. L.; National Renewable Energy Laboratory (NREL); Zond Systems, Inc. (International Foundation for Telemetering, 1993-10)
      The National Renewable Energy Laboratory (NREL) has teamed up with Zond Systems, Inc., to provide a rugged, low-cost, advanced data-acquisition system (ADAS) for use in field test projects. The ADAS simplifies the process of making accurate measurements on mechanical equipment exposed to harsh environments. It provides synchronized, time-series measurement data from multiple, independent sources. The ADAS is currently being used to acquire data from large wind turbines in operational wind-plant environments. ADAS modules are mounted on rotating blades, turbine towers, nacelles, control modules, meteorological towers, and electrical stations. The ADAS has the potential to meet the testing and monitoring needs of many other technologies as well, including vehicles, heavy equipment, piping and power transmission networks, and building energy systems.
    • Instrumentation and Telemetry Systems for Free-Flight Drop Model Testing

      Hyde, Charles R.; Massie, Jeffrey J.; NASA Langley Research Center (International Foundation for Telemetering, 1993-10)
      This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20% of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which will be followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.
    • Batch Processing of Flight Test Data

      Turver, Kim D.; Boeing Commercial Airplane Group (International Foundation for Telemetering, 1993-10)
      Boeing's Test Data Retrieval System not only acts as an interface between the Airborne Data Acquisition System and a mainframe computer but also does batch mode processing of data at faster than real time. Analysis engineers request time intervals and measurements of interest. Time intervals and measurements requested are acquired from the flight tape, converted to first order engineering units, and output to 3480 data cartridge tape for post processing. This allows all test data to be stored and only the data of interest to be processed at any given time.
    • Magellan Recorder Data Recovery Algorithms

      Scott, Chuck; Nussbaum, Howard; Shaffer, Scott; California Institute of Technology; Hughes Aircraft (International Foundation for Telemetering, 1993-10)
      This paper describes algorithms implemented by the Magellan High Rate Processor to recover radar data corrupted by the failure of an onboard tape recorder that dropped bits. For data with error correction coding, an algorithm was developed that decodes data in the presence of bit errors and missing bits. For the SAR data, the algorithm takes advantage of properties in SAR data to locate corrupted bits and reduce there effects on downstream processing. The algorithms rely on communication approaches, including an efficient tree search and the Viterbi algorithm to maintain the required throughput rate.
    • Multiple Channel, Multiple Data Type, Rugged 8mm Recorder

      Harris, Kevin E.; Veda Incorporated (International Foundation for Telemetering, 1993-10)
      Low cost recording devices for telemetry and other data acquisition applications are of vital importance in light of today's shrinking budgets and project cut-backs. The desire to replace large, expensive, multi-channel recorders with smaller, less expensive recorders is becoming commonplace in government and industry. Many of these small recorders in the past have been limited to a single recording channel, and to one particular data type, due to recorder architectures. The 8 millimeter (8mm) tape cartridge recorder has been looked at in the past as a low cost recording device, however products utilizing this technology have been strictly limited in the number of channels, and data types. In response to this need, Veda has developed a new data acquisition recorder utilizing an 8mm recorder packaged in a small, flight qualified rugged enclosure with modular, and interchangeable, input channels. These microprocessor controlled inputs are capable of accepting PCM telemetry, MIL-STD-1553, voice, IRIG time, and ARINC 429/629 data. The new architecture allows for multiplexing of multiple channels onto the single channel tape medium as well as direct playback from the recorder for certain data types. This paper will discuss the recorder's architecture, design problems solved during development, and general capabilities.
    • Video Repeater for the Dry Valleys Region of Antarctica

      Peebles, Michael J.; Robertson, William G., Jr.; Naval Electronic Systems Engineering Center (International Foundation for Telemetering, 1993-10)
      A repeater is being designed to provide a telemetry and compressed video link from a remote robot located in the Dry Valleys Region of Antarctica, over a mountain range to California via McMurdo Antarctica. In return a command link is provided for control. A simple task normally, but a bit more difficult when considerations include the unforgiving elements of Antarctica itself. Even with a design using the most robust equipment, tradeoffs must always be made for the effects of the isolation and the weather. This paper describes one approach to the design of equipment capable of insuring the proper bandwidth, power output, and receive sensitivity that can use the energy provided by Mother Nature to continually charge the primary power source, and the engineering struggle to use electronic equipment in the severe and harsh environment of Antarctica.
    • Micro-Track Digital Cassette Recording

      Kayes, Edwin; Penny & Giles Data System (International Foundation for Telemetering, 1993-10)
      The increasing availability of powerful yet relatively inexpensive data acquisition and processing techniques has precipitated a radical reappraisal of the methods used to capture, manipulate and store data of all kinds. Some of the recently introduced recording systems can be used both for fast data capture and for high capacity archival/back-up applications - effectively bridging a long-standing divide between these two formerly diverse aspects of data recording and processing. This paper offers a brief overview of a new technology known as micro-track recording, and suggests ways in which system designers and integrators may take full advantage of its important new facilities and features.
    • High Speed Digital Data Inputs for Thermal Array Chart Recorders

      Gaskill, David M.; Astro-Med Inc. (International Foundation for Telemetering, 1993-10)
      Many telemetry stations would like to convert from using digital-to analog converters (DAC's) to using direct digital inputs to their chart recorders but can't find a suitable recorder interface. These stations often have hundreds or even thousands of channels of information being bussed around at very high speeds on propriatary real-time computer systems. The lack of standardization has naturally presented recorder manufacturers with problems in selecting the appropriate interface hardware. Standard parallel interfaces, such as SCSI and GPIB, are usually too slow and not really suited for real-time transfer, although they can be used in some circumstances which will be described. The best choice seems to be a general purpose parallel port of at least 16 data bits which can support a large number of addresses. Such an interface can be used with a high speed network like SCRAMNet as well as with a general purpose computer or workstation. This paper will describe several available parallel ports using both TTL and RS-485 (long-line) hardware and some practical implementations of thermal array recorder use with SCRAMNet, GPIB, and general purpose parallel busses.
    • TDRSS Link Budget Design Table

      Minnix, Timothy; Horan, Stephen; New Mexico State University (International Foundation for Telemetering, 1993-10)
      The Consultative Committee for Space Data Systems (CCSDS) has issued a Recommendation CCSDS 401.0-B for Radio Frequency and Modulation Systems to be used in Earth stations and spacecraft. Part of this Recommendation is a standardized design tool for link budget computations. This design tool is intended to assist spacecraft designers in preparing the power and performance designs of their spacecraft for communicating with existing standard ground stations. The present CCSDS Recommendation addresses a link design typical for that found with the Deep Space Network (DSN). DSN link analyses use a large subset of link-specific parameters not of any particular use if the space data link passes through the Tracking and Data Relay Satellite System (TDRSS). The link architecture also differs in that the TDRSS parameter set needs to include an extra link through the satellite (two-hop) link versus a DSN-type link which is single-hop. Conversely, the treatment of ranging, PN coding requirements, and TDRSS acquisition and data group formalities are either not of the same format or not present at all on the DSN-type links. The baseline CCSDS 401 design tool is a Microsoft Excel spreadsheet that can run on an IBM PC or compatible computer. This baseline spreadsheet has been modified to account for the differences between baseline CCSDS model and TDRSS link operations. The paper will discuss the modifications made to the spreadsheet for the TDRSS system details. We will also present example usages of the spreadsheet.
    • Using the Telemetry Attributes Transfer Standard

      Takacs, Theodore, Jr. (International Foundation for Telemetering, 1993-10)
      Telemetry attributes are the detailed items of information needed for a receiving/processing system to acquire and process data from a given test item. There are currently as many different ways to describe telemetry attributes as there are different organizations which provide them (instrumentation groups and aircraft/missile manufacturers) and use them (telemetry processing systems/test ranges). The Telemetry Attributes Transfer Standard (TMATS) has been developed as a method of standardizing the transfer of telemetry attributes information. This paper describes the TMATS standard and discusses its purpose and application.
    • Automated Analysis Tools for Reducing Spacecraft Telemetry Data

      Voss, T. J.; Lawrence Livermore National Laboratory (LLNL) (International Foundation for Telemetering, 1993-10)
      A practical description is presented of the methods used to reduce spacecraft telemetry data using a hierarchial toolkit of software programs developed for a UNIX environment.
    • Implementation of a Low Cost Commercial-Off-the-Shelf Commanding System

      Grich, Richard J., Jr.; Bourassa, Chris R.; Storm Integration, Inc. (International Foundation for Telemetering, 1993-10)
      Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. Over the past five years, technical advances have resulted in Commercial-Off-The-Shelf (COTS) products which greatly reduce the complete life cycle costs associated with satellite and launch control system procurements. These advances, however, have been restricted to specific functional areas of the satellite and launch control system - most notably, telemetry processing and simulation. Until recently, technological advances in the development of COTS products which support functional areas like commanding and mission planning have lagged behind. This paper describes the development and application of a COTS product which provides a highly advanced commanding capability that is tightly integrated with the processing of telemetry data. This closed loop telemetry and commanding system forms the basis of a satellite or launch control system at a fraction of the cost normally associated with systems of this kind.
    • The History of Telemetry at White Sands Missile Range, NM

      Montano, William G.; Newton, Henry L.; White Sands Missile Range (International Foundation for Telemetering, 1993-10)
      This paper presents a history of telemetry at White Sands Missile Range, New Mexico. White Sands Missile Range is located in the Tularosa Basin between the San Andres and the Organ Mountains on the west and the Sacramento Mountains on the east. Designation of more than one million acres of New Mexico range land as a testing areas established White Sands Proving Ground on July 9, 1945 as the Birthplace of Americas Missile and Space activity. On July 16, 1945 the first Atomic Bomb was exploded at Trinity Site. Project Hermes began in November of 1944 with a contract to General Electric by the Ordnance Department to develop a long range guided missile for the Army. Missile testing began in September of 1945 with the firing of Tiny Tim missiles. The capture of German V2 rockets led to testing and firing V2s concurrently with the Hermes. The first two-stage rocket consisted of a WAC Corporal mounted on the nose of a V2. Bumper # 5 set flight records of 5,150 miles an hour and an altitude of 244 miles on February 24, 1949. The paper includes: *Chronological highlights of telemetering events. *Discussion of telemetry systems and events that occurred at WSPG/WSMR from 1944 through 1990. *Telemetry systems and events from 1990 to the present. *Planned future telemetry systems and probable future systems.
    • Flight Interruption System for a Small Diameter Missile with Telemeter

      Lusk, Kenneth P.; Naval Air Warfare Division, Weapons Division (International Foundation for Telemetering, 1993-10)
      A very restrictive down-range flight area for a small ground-to-air missile required the interruption of the flight after the missile had flown past a specialized target and telemetry data had been transmitted to a receiving station. Explosive bolts separated the missile into two sections and cables loosely attaching the two sections caused the system to tumble and therefore interrupt the flight. Because of the high dynamic forces exerted on the attaching cables, soft material "shock absorbers" were used to assure the integrity of the cables.
    • Reusable Software Components for Monitoring and Control of Telemetry Processing Systems

      Costenbader, Jay; Thorn, Karen; NASA/Goddard Space Flight Center (International Foundation for Telemetering, 1993-10)
      NASA Goddard Space Flight Center (GSFC) has developed a set of functional telemetry processing components based upon Very Large Scale Integration (VLSI) and Application Specific Integrated Circuits (ASIC). These components provide a framework for the assembly of telemetry data ground systems for space projects such as the Earth Observing System (EOS) and the Small Explorer (SMEX) mission series. Implementation of the ground systems for such projects using a common set of functional components has obvious cost benefits in both systems development and maintenance. Given the existence of these components, the next logical step is to utilize a similar approach and create a set of reusable software components for the implementation of telemetry data system monitoring and control functions. This paper describes a generalized set of software components, called the Telemetry Processing Control Environment (TPCE), which has been developed to fulfil this need. This combination of hardware and software components enables the rapid development of flexible, cost-effective telemetry processing systems capable of meeting the performance requirements facing NASA in the coming decade.
    • A Small State-of-the Art Range Safety Telemetry System

      Lingerfelt, Wes; Dawson, Dan; ITT Federal Services Corp.; Veda Systems Inc. (International Foundation for Telemetering, 1993-10)
      The US Air Force is required to protect the lives of individuals and property in areas potentially hazardous as a result of launch vehicle failures occurring from Vandenberg AFB, California. This paper describes the application of modern telemetry processing equipment to the Range Safety function.
    • Fast Auroral Snapshot Explorer (FAST) Packet Processing System

      Shi, Jeff; Mao, Tony; Chesney, James; Speciale, Nicholas; RMS Technologies, Inc.; Data Systems Technology Division; NASA, Goddard Space Flight Center (International Foundation for Telemetering, 1993-10)
      This paper describes the design of a space telemetry level zero processing system for National Aeronautics and Space Administration's (NASA's) Fast Auroral Snapshot Explorer (FAST) science mission. The design is based on a prototype Very Large Scale Integration (VLSI) level zero processing system, and utilizes VLSI telemetry data processing functional components, VLSI system technologies, and Object-Oriented Programming. The system performs level zero processing functions based on Consultative Committee for Space Data Systems (CCSDS) data format [1], and features high data processing rates, highly automated operations, and Open Software Foundation (OSF)/Motif based Graphical User Interface (GUI).
    • TRADAT VI Telemetry Ranging System

      Bertenshaw, Thomas G.; Oklahoma State University (International Foundation for Telemetering, 1993-10)
      Frequently a requirement exists to track sounding rockets or balloons from remote locations which have no radar capability. Occasionally, there is also a requirement to provide an alternative to radar tracking at those locations where it exists. TRADAT VI satisfies both requirements by providing vehicle positional from telemetry. In addition, it also provides real-time trajectory plots by its graphical display.
    • Lessons Learned in Using COTS for Real Time High Speed Data Distribution

      Downing, Bob; Bretz, Jim; SPARTA Incorporated (International Foundation for Telemetering, 1993-10)
      Currently, there is a large effort being placed on the use of commercial-off-the-shelf (COTS) equipment to satisfy dedicated system requirements. This emphasis is being pursued in the quest of reducing overall system development costs. The development activity discussed in this paper consisted of determining some of the boundaries and constraints in the use of COTS equipment for high speed data distribution. This paper will present some of the lessons learned in developing a real-time high speed (greater than 1 MByte/sec) data distribution subsystem using COTS equipment based on industry accepted standards and POSIX P1003.1 operating system compliance.