PENHARLOW, DAVID; AYDIN VECTOR DIVISION (International Foundation for Telemetering, 1990-11)
      The new generation of advanced tactical aircraft and missiles places unique demands on the electronic and mechanical designs for flight test instrumentation, high bit rates, operating temperature range and system interconnect wiring requirements. This paper describes a microminiature PCM distributed data acquisition system with integral signal conditioning (MMSC) which has been used in advanced aircraft and missile flight testing. The MMSC system is constructed from microminiature, stackable modules which allow the user to reconfigure the system as the requirements change. A second system is also described which uses the same circuitry in hermetic hybrid packages on plug-in circuit boards.

      Malone, Erle W.; Breedlove, Phillip; Boeing Aerospace, Seattle, WA; Loral Conic, San Diego, CA (International Foundation for Telemetering, 1990-11)
      A telemetry system which integrates MIL-STD-1553 bus data, dual-simplex bus data, vehicle performance data, and environmental sensor data multiplexing involves many interfacing constraints. The engineering design considerations and hardware constraints required to implement this system are presented in this paper.

      Vander Stoep, Donald R.; Ball Systems Engineering Division, San Diego, CA (International Foundation for Telemetering, 1990-11)
      Sensor slaying consists of pointing a secondary (slave) sensor to a target vehicle, coordinates of which are defined by measurements from a primary (master) sensor or set of master sensors. For typical range applications, the secondary sensor does not possess an autonomous tracking capability; thus, pointing commands for the secondary sensors must be derived from an external source, i.e., the primary sensor or system. A common example of a range slaving system consists of an optical sensor (e.g., a cine- of video theodolite) slaved to a tracking radar. In this instance, radar measurements (range, azimuth, elevation) are typically converted into a cartesian set (x, y, z), followed by the computation of the azimuth and elevation angles from the theodolite site to the designated point. These angles define commands for theodolite pointing.
    • Modified Instrumentation for Torsional Impulse Projectiles

      PETRELLESE, JOSEPH, JR.; US ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER (International Foundation for Telemetering, 1990-11)
      The demand for test projectiles instrumented for gathering in-bore torsional impulse data has been steadily increasing. A test projectile consists of a telemeter, 12 accelerometers, and the remaining necessary hardware. Cost, availability, and survivability of commercial accelerometers being used have become a major concern. In-house testing of a new source and different technology accelerometer show a cost benefit, higher availability and a much higher survivability rate. This paper outlines the recent progress of qualifying a new source and different technology accelerometer, which leads to a modification of the current Torsional Impulse test projectile, along with potential developments to insure a more cost effective, available, and reliable test projectile to be used in future torsional impulse tests.
    • Modulation Index and FM Improvement for Analog TV

      Baylor, J. Thomas; Loral Conic (International Foundation for Telemetering, 1990-11)
      The concepts of modulation index and FM improvement are simple and straightforward when the modulating signals are sinesoidal. For a complex baseband waveform such as analog TV, the FM improvement may be seriously underestimated. A method for computer simulation of video waveforms and the resulting spectra are presented.

      Ferguson, D.; Meyers, D.; Gemmill, P.; Pereira, C.; Honeywell Systems and Research Center; Army Armament Research, Development and Engineering Center (International Foundation for Telemetering, 1990-11)
      Instrumentation for taking dynamic in-bore measurements during high accelerations typically has been limited to accelerations under 20,000 g’s. In munition development and testing, there is a need for telemetry instrumentation that can relay dynamic performance data at 100,000 g’s. This paper describes the development and testing of a stable, regulated, telemetry transmitter that has been successfully tested to 67,400 g’s.

      Yovanof, Gregory S.; Kodak Berkeley Research (International Foundation for Telemetering, 1990-11)
      The ever-increasing demands of the modern telemetry system for the transmission of high resolution digital video data at primary and sub-primary bit rates necessitate the employment of efficient motion-compensated video coding algorithms. This paper reviews the current status of motion compensation techniques. The two major classes of motion estimation methods currently being used for predictive coding of time varying images: block matching and pel-recursive algorithms are treated in thorough detail. Examples of practical video coding systems using motion compensated compression are exhibited. Recent advances in the VLSI technology have made it possible to fit the entire circuitry required for a motion compensation algorithm onto a single chip.

      Berdugo, Albert; Ricker, William G.; Aydin Vector Division (International Foundation for Telemetering, 1990-11)
      Increased data throughput demands in military and avionics systems has led to the development of an advanced, All-Bus MIL-STD-1553 Instrumentation Monitor. This paper discusses an airborne unit which acquires the information from up to 8 dual-redundant buses, and formats the data for telemetry, recording or real-time analysis according to the requirements of IRIG-106-86, Chapter 8. The ALBUS-1553 acquires all or selected 1553 messages which are formatted into IRIG-compatible serial data stream outputs. Data is time tagged to microsecond resolution. The unit selectively transmits entire or partial 1553 messages under program control. This results in reduced transmission bandwidth if prior knowledge of 1553 traffic is known. The ALBUS also encodes analog voice inputs, discrete userword inputs and multiplexed analog (overhead) inputs. The unit is provided in a ruggedized airborne housing utilizing standard ATR packaging,

      Xi-Hua, Li; Xinan Electronic Engineering Institute, China (International Foundation for Telemetering, 1990-11)
      This paper describes the technical principle that signals conversion, data-processing and data storage are directly carried out without filling up with the reference pulse for PPM and PPK (pulse position keying). By means of analysis for typical frame structure of PPM/PPK signals, a variety of math models of signal time relationship of the system were found, and based on this, a engineering way and a principle block diagram for signals conversion, data processing and data storage were given out.

      Qiu-Cheng, Xie; Zhong-Kui, Lei; Nanjing Aeronautical Institute, Nanjing, China (International Foundation for Telemetering, 1990-11)
      In this paper, twenty-four optimum group synchronization codes (N=31 to 54) for PCM telemetry systems are presented. These optimum codes are the newest development at the category of optimum group synchronization codes up to now in the world.

      COOK, JAMES H., JR.; KOSTER, A. RENEE; SCIENTIFIC-ATLANTA, INC. (International Foundation for Telemetering, 1990-11)
      The design and performance of a 1435 MHZ to 2600 MHZ ESCAN1 feed will be discussed. The radiation characteristics of a very small (<10 wavelengths) reflector antenna will be presented. The ESCAN tracking concept offers a significant improvement in the effective gain, sidelobes and tracking performance for broadband telemetry trackers over previous, low-cost approaches. The tradeoffs associated with the optimization of the ESCAN antenna’s radiation performance will be presented along with a comparison of conical scan and single channel monopulse performance. The tradeoffs will include an analysis of the limitations in performance due to central blockage, aperture illumination, spillover, and coma effects of an “effective” off-axis feed for a small, paraboloidal reflector antenna.

      McGiven, Fred A.; TIW Systems Inc. (International Foundation for Telemetering, 1990-11)
      TIW Systems has developed a modern, compact, modular, antenna controller (ACU) for telemetry, tracking, and communications antennas. The controller combines the functions of an antenna control unit, a position conversion/display chassis, and a polarization control unit. By using plug-in cards, a tracking receiver, autophasing control unit, tracking synthesizer, and other functions can be added. Depending on the requirements, the tracking receiver can be a simple wide-band steptrack receiver, or can be a full function phase-locked-loop (PLL) autotrack receiver. In the past, all this capability would have taken a large portion of an entire equipment rack. The unit uses modern microprocessor technology for digitally controlling the position and rate of the antenna. Advanced tracking modes and remote control can be added by connecting an external computer (PTIC) to one of the ACU’s serial ports. The PTIC also provides a user friendly operator interface through the use of high resolution color graphics and easy to understand menus.
    • A New Method for Refinning Orbit of CPS Satellite Using Phase Measurement

      Sheng, Liu Dong; Beijing Institute of Satellite (International Foundation for Telemetering, 1990-11)
      This paper developed a new method of refinning GPS satellite orbit using phase measurement without knowing the GPS codes. Because this approach have no connection with any particular physical model, avoiding introducing any dynamic error, this method make it possible to get high precision GPS satellite orbit. A simulation computation has been conducted and gave an encouraging result.
    • An Object-Oriented Telemetry Format Management (TFM) System

      Li, Tientien; TACT Inc. (International Foundation for Telemetering, 1990-11)
      The telemetry format is a key piece of information utilized by both the flight segment and the ground segment of a mission. During the evolution of a mission, the telemetry format is usually going through many changes and refinements. Sometimes, a format may even evolve from mission to mission. The conventional Relational Data Base Management Systems (RDBMS) do not work well with telemetry formats because of the multidimensional nature of most telemetry formats. To reduce the complexity of managing dynamic telemetry formats, an innovative Telemetry Format Management (TFM) system has been designed. The TFM system utilizes new object-oriented concepts in managing the creation, the evolution, and the utilization of telemetry formats. It supports common telemetry formats including: Time-Division Multiplexed (TDM) telemetry formats and packet telemetry formats. By using the TFM system, one can greatly simplify most tasks associated with the development of telemetry formats. This paper describes the architecture, design concepts, and operational philosophy of the TFM system.

      Penna, Sergio Duarte; EMBRAER - Flight Test Division (International Foundation for Telemetering, 1990-11)
      The 90’s will be a challenge to many industries, but in particular to airframe manufacturers like EMBRAER that wish to grow up on a solid basis not only for this decade, but also for the next one. This paper describes the requirements of the on-board data acquisition system and alternatives proposed for the EMBRAER’s new 19-seat, twin engine turbo prop commuter aircraft, the CBA-123.
    • Onboard Television Transmission from A Supersonic Vehicle

      Rose, Robert P.; Naval Weapons Center, China Lake, California (International Foundation for Telemetering, 1990-11)
      A telemetry system designed to photograph and transmit views of a working recovery system. The system utilizes a 5-inch diameter vehicle fitted with a 1/1000-second electronically shuttered video camera and a wideband telemetry transmitter with a pulse code modulation [PCM] signal sent via a second radio frequency [RF] channel.

      Furht, Borko; Joseph, David; Gluch, David; Parker, John; Modular Computer Systems, Inc., an AEG company (International Foundation for Telemetering, 1990-11)
      In this paper we discuss the next generation of open real-time systems for time critical applications in telemetry. Traditionally, real-time computing has been a realm of proprietary systems, with real-time applications written in assembly language. With the escalating cost of software development and the need for porting real-time applications to state-of-the-art hardware without massive conversion efforts, there is a need for real-time applications to be portable so that they can be moved to newer hardware platforms easily. Therefore, the next generation of real-time systems will be based on open systems incorporating industry standards, which will reduce system cost and time to market, increase availability of software packages, increase ease-of-use, and facilitate system integration. The open real-time system strategy, presented in this paper, is based on hardware architectures using off-the-shelf microprocessors, Motorola 680X0 and 88X00 families, and the REAL/IX operating system, a fully preemptive real-time UNIX operating system, developed by MODCOMP.
    • Optical Communication in Space A Challenge to Microwave Links

      Mayer, Gerhard; Franz, Jürgen; Applied Data Systems Division; Institute for Communication Technologies (International Foundation for Telemetering, 1990-11)
      Laser communications offer a viable alternative to microwave communications for intersatellite and interplanetary links. Main characteristics are higher data rates, small size antenna telescopes with narrow beamwidths, but the drawback of the necessity for complex pointing, acquisition and tracking systems. After a review of some important technology aspects and modulation / detection schemes the optospecific link parameters axe discussed. An experimental coherent optical system set-up at DLR is described.

      Murphy, Frank; Aydin Computer and Monitor Division (International Foundation for Telemetering, 1990-11)
      The built-in diagnostic test has taken on an increased role as a maintenance tool in today’s complex electronic systems. While the ultimate diagnostic would exercise all of the major functions in a system and instantly isolate and identify any fault down to the specific part, many practical problems stand in the way. Using the diagnostic facility installed in a recent frame synchronizer/decommutator for the Jet Propulsion Laboratory (JPL) in Pasadena, the author attempts to show the logical approach, considerations, and compromises necessary to design the best possible diagnostic routine in a telemetry processor.

      Watson, John Calvin; New Mexico State University (International Foundation for Telemetering, 1990-11)
      The Packet Telemetry Ground Station which receives telemetry data from the Space Station must be able to receive and process various data types including high-rate video, audio, instrumentation, electronic mail, telecommand, and engineering. The Packet Telemetry Ground Station must also be flexible to accommodate changing missions and payloads. Computer simulations of the Packet Telemetry Ground Station provide information about device specifications required to achieve an acceptable level of performance under changing telemetry data traffic configurations. This paper describes a computer simulation model for a Packet Telemetry Ground Station Architecture which was tested using ten different traffic components randomly transmitting data. The Packet Telemetry Ground Station Simulation status and utilization plots are discussed in terms of interpreting the simulation results.