• An Object-Oriented Telemetry Format Management (TFM) System

      Li, Tientien; TACT Inc. (International Foundation for Telemetering, 1990-11)
      The telemetry format is a key piece of information utilized by both the flight segment and the ground segment of a mission. During the evolution of a mission, the telemetry format is usually going through many changes and refinements. Sometimes, a format may even evolve from mission to mission. The conventional Relational Data Base Management Systems (RDBMS) do not work well with telemetry formats because of the multidimensional nature of most telemetry formats. To reduce the complexity of managing dynamic telemetry formats, an innovative Telemetry Format Management (TFM) system has been designed. The TFM system utilizes new object-oriented concepts in managing the creation, the evolution, and the utilization of telemetry formats. It supports common telemetry formats including: Time-Division Multiplexed (TDM) telemetry formats and packet telemetry formats. By using the TFM system, one can greatly simplify most tasks associated with the development of telemetry formats. This paper describes the architecture, design concepts, and operational philosophy of the TFM system.

      Penna, Sergio Duarte; EMBRAER - Flight Test Division (International Foundation for Telemetering, 1990-11)
      The 90’s will be a challenge to many industries, but in particular to airframe manufacturers like EMBRAER that wish to grow up on a solid basis not only for this decade, but also for the next one. This paper describes the requirements of the on-board data acquisition system and alternatives proposed for the EMBRAER’s new 19-seat, twin engine turbo prop commuter aircraft, the CBA-123.
    • Onboard Television Transmission from A Supersonic Vehicle

      Rose, Robert P.; Naval Weapons Center, China Lake, California (International Foundation for Telemetering, 1990-11)
      A telemetry system designed to photograph and transmit views of a working recovery system. The system utilizes a 5-inch diameter vehicle fitted with a 1/1000-second electronically shuttered video camera and a wideband telemetry transmitter with a pulse code modulation [PCM] signal sent via a second radio frequency [RF] channel.

      Furht, Borko; Joseph, David; Gluch, David; Parker, John; Modular Computer Systems, Inc., an AEG company (International Foundation for Telemetering, 1990-11)
      In this paper we discuss the next generation of open real-time systems for time critical applications in telemetry. Traditionally, real-time computing has been a realm of proprietary systems, with real-time applications written in assembly language. With the escalating cost of software development and the need for porting real-time applications to state-of-the-art hardware without massive conversion efforts, there is a need for real-time applications to be portable so that they can be moved to newer hardware platforms easily. Therefore, the next generation of real-time systems will be based on open systems incorporating industry standards, which will reduce system cost and time to market, increase availability of software packages, increase ease-of-use, and facilitate system integration. The open real-time system strategy, presented in this paper, is based on hardware architectures using off-the-shelf microprocessors, Motorola 680X0 and 88X00 families, and the REAL/IX operating system, a fully preemptive real-time UNIX operating system, developed by MODCOMP.
    • Optical Communication in Space A Challenge to Microwave Links

      Mayer, Gerhard; Franz, Jürgen; Applied Data Systems Division; Institute for Communication Technologies (International Foundation for Telemetering, 1990-11)
      Laser communications offer a viable alternative to microwave communications for intersatellite and interplanetary links. Main characteristics are higher data rates, small size antenna telescopes with narrow beamwidths, but the drawback of the necessity for complex pointing, acquisition and tracking systems. After a review of some important technology aspects and modulation / detection schemes the optospecific link parameters axe discussed. An experimental coherent optical system set-up at DLR is described.

      Murphy, Frank; Aydin Computer and Monitor Division (International Foundation for Telemetering, 1990-11)
      The built-in diagnostic test has taken on an increased role as a maintenance tool in today’s complex electronic systems. While the ultimate diagnostic would exercise all of the major functions in a system and instantly isolate and identify any fault down to the specific part, many practical problems stand in the way. Using the diagnostic facility installed in a recent frame synchronizer/decommutator for the Jet Propulsion Laboratory (JPL) in Pasadena, the author attempts to show the logical approach, considerations, and compromises necessary to design the best possible diagnostic routine in a telemetry processor.

      Watson, John Calvin; New Mexico State University (International Foundation for Telemetering, 1990-11)
      The Packet Telemetry Ground Station which receives telemetry data from the Space Station must be able to receive and process various data types including high-rate video, audio, instrumentation, electronic mail, telecommand, and engineering. The Packet Telemetry Ground Station must also be flexible to accommodate changing missions and payloads. Computer simulations of the Packet Telemetry Ground Station provide information about device specifications required to achieve an acceptable level of performance under changing telemetry data traffic configurations. This paper describes a computer simulation model for a Packet Telemetry Ground Station Architecture which was tested using ten different traffic components randomly transmitting data. The Packet Telemetry Ground Station Simulation status and utilization plots are discussed in terms of interpreting the simulation results.
    • A Parallel Computer Approach for Processing Space Station Telemetry Packets

      Polson, John T.; New Mexico State University (International Foundation for Telemetering, 1990-11)
      In the Space Station Era, the amount of required telemetry data will be enormous. NASA has proposed a space based network that may ultimately have peak data rates up to 1.2 billion bits per second. There are several levels of processing for the data once it is on the ground. The level zero processing involves reordering of packets, error correction, on line storage, and simple conversion to engineering units. Once the level zero processing is complete the data will be routed over conventional networks to the end users for further processing. The level zero processing will be done by the Data Handling Service, DHS, in real time. This paper discusses a research effort at New Mexico State University to design and simulate the DHS function using a Global Memory Message Passing, GMMP, parallel computer architecture under development in the Electrical and Computer Engineering Department. This GMMP computer is capable of moving data into and out of main memory at the peak rate. The processing is partitioned by virtual channel number. This proposed implementation does not add much latency to the network. It appears that the entire GMMP computer can be built by cleverly using existing technology.

      Furht, Borko; Gluch, David; Joseph, David; Modular Computer Systems, Inc., an AEG company (International Foundation for Telemetering, 1990-11)
      The performance of general purpose computers is typically measured in terms of Millions of Instructions per Second (MIPS) or Millions of Floating-Point Operations per Second (MFLOPS). Standard benchmark programs such as Whetstone, Dhrystone, and Linpack typically measure CPU speed in a single-task environment. However, a computer may have high CPU performance, but poor real-time capabilities. Therefore there is a need for performance measures specifically intended for real-time computer systems. This paper presents four methodologies, related metrics and benchmarks for objectively measuring real-time performance: (a) Tri-Dimensional Measure, (b) Process Dispatch Latency Time, (c) Rhealstone Metric, and (d) Vanada Benchmark. This proposed methodologies and related measures are applied in the performance evaluation of several real-time computer systems, and the results obtained are presented.

      Fiebig, U.-C.; Schweikert, R.; German Aerospace Research Establishment (DLR) (International Foundation for Telemetering, 1990-11)
      Various PN codes for use in TTC spread-spectrum systems are considered. The evaluation is based on peak magnitudes and amplitude distributions of both the even and the odd autocorrelation and crosscorrelation functions. Furthermore the influence of the phase of a sequence on the correlation parameters is studied, multiple-access characteristics in terms of the total interference parameter are evaluated and synchronous as well as asynchronous code generation is considered.1

      DeWaters, Ronald; Anderson, William; Naval Surface Warfare Center; Loral Data Systems (International Foundation for Telemetering, 1990-11)
      In 1986 the Navy procured Automatic Engineering Read Out (AERO) Telemetry Test Systems to receive, record, process and display telemetry data transmitted from SM-1 and SM-2 STANDARD missiles. AERO systems are self-contained data acquisition systems which are portable for field use, and are capable of receiving missile data, recording the data on analog tape, decommutating data into a computer compatible format, recording data on disk, and displaying processed data on the operator’s terminal. The original design was intended to be versatile and to accommodate future telemeters through software programming, signal switching, unit/module substitution, or add-on equipment. Original missile formats included data rates up to 50,000 data words per second. AERO systems have been used to support field testing of Navy missiles since 1987. In 1989 the AERO system requirements were changed to include support for a new STANDARD missile telemeter which transmits data at much higher rates. The AERO systems have been upgraded to support the new requirement by replacing I/O modules in the host computer, and modifying the control software. The modified system, which is hosted by a low cost DEC MicroVAX computer, records 100 percent of the telemeter data on disk at rates up to 600,000 bytes (300,000 data words) per second, and displays results for quick look review immediately after the missile test. This paper discusses the requirements for the AERO systems, the design philosophy used to ensure an upgradable path, and the benefits of that philosophy when an upgrade was required. The upgrade itself is significant because a low cost MicroVAX has been adapted to a high performance application. The AERO systems were designed, developed and upgraded by Loral Data Systems (formerly Fairchild Weston Data Systems) to the specifications of the Naval Surface Warfare Center in Dahlgren, Virginia.

      Napier, T. M.; Peloso, R.A.; Aydin Computer and Monitor Division (International Foundation for Telemetering, 1990-11)
      An innovative digital approach to analog noise synthesis is described. This method can be used to test bit synchronizers and other communications equipment over a wide range of data rates. A generator has been built which has a constant RMS output voltage and a well-defined, closely Gaussian amplitude distribution. Its frequency spectrum is flat within 0.3 dB from dc to an upper limit which can be varied from 1 Hz to over 100 MHz. Both simulation and practical measurement have confirmed that this generator can verify the performance of bit synchronizers with respect to the standard error rate curve.

      Ji-San, Lu; Beijing Institute of Special Mechanical and Electrical Devices (International Foundation for Telemetering, 1990-11)
      A attitude destalilization of a reentry vehicle (RV) due to rolling etc. during its flight is one of the major, proflems the channel design of the RV’S radio communication has been facing with. In-this Paper, the requirements of an antenna design are briefly discribed, the need for an antenna program control system is advanced, its block diagram is given, and operating principle and various concept of its components are explained.
    • A Programmable PCM Data Simulator for Microcomputer Hosts

      Cunningham, Larry E.; New Mexico State University (International Foundation for Telemetering, 1990-11)
      Modem microcomputers are proving to be viable hosts for telemetry functions, including data simulators. A specialized high-performance hardware architecture for generating and processing simulator data can be implemented on an add-in card for the microcomputer. Support software implemented on the host provides a simple, high-quality human interface with a high degree of user programmability. Based on this strategy, the Physical Science Laboratory at New Mexico State University (PSL) is developing a Programmable PCM Data Simulator for microcomputer hosts. Specifications and hardware/software architectures for PSL’s Programmable PCM Data Simulator are discussed, as well as its interactive user interface.
    • A Quantized PSK 8-State Decoder for Spectrally Efficient Communications

      Ross, Michael D.; Carden, Frank; New Mexico State University (International Foundation for Telemetering, 1990-11)
      Trellis Coded Modulation [5] combines the Viterbi Algorithm [4] with PSK or QAM signalling to achieve a coding gain, using signal set expansion as an alternative to bandwidth expansion. Optimum detection of TCM requires the calculation of Euclidean distances in the signal set space. Circular Quantization of received signal vectors as an alternative to Euclidean distance calculation has been shown to result in minimal loss of performance when used with a 4-state trellis codes [1, 2, 3]. This paper investigates the effect of circular quantization on 2 different 8-state trellis codes. The 8-state codes showed a modest gain over the 4-state code, while the effect of circular quantization on the 8-state codes paralleled the effect on the 4-state code.

      Crabtree, Steven B.; Feather, Bobby J.; Loral Data Systems (International Foundation for Telemetering, 1990-11)
      Telemetry applications today are requiring more and more computing power. The computing industry is responding to this need with more powerful machines. With these new machines the UNIX operating system is rapidly being accepted as the system of choice for the popular lowend and midrange RISC and CISC computers. The system discussed addresses the long standing question, “Can a complete UNIX system perform in a high-data-rate real-time environment?”. This paper describes the Loral Data Systems development of a Real-Time Data Transcription System (RDTS) built for Lawrence Livermore National Laboratory and TRW. This system utilizes a powerful telemetry preprocessor, internally bus-coupled to a real time UNIX host computer. An industry-standard VME-to-VME coupling provides an efficient setup, control and computational gateway for preprocessed telemetry data. This architecture illustrates a UNIX operating system to support a pseudo-real-time telemetry application.

      KIBLER, R.; RODGERS, B.; BEERS, R.; JOSEPH, D.; MODCOMP; ARCATA (International Foundation for Telemetering, 1990-11)
      This paper describes the history, planning, analysis, design and performance specifications/results of a very fast, real time data acquisition and processing system. The heart of the system is MODCOMP’s fully pre-emptive, realtime UNIX operating system REAL/IX2. The entire system consists of 19 intelligent communication/interface processors on a VME bus all managed by the REAL/X2 master processor. The application for this system was developed by Arcata Assoc. of Las Vegas, NV. for use at Nellis Air Force Base. It resides in the Nellis Range Support network as the master switching node subsystem. The Nellis Network is a data communications system which supports interactive, fullduplex communication of digital data between terminal nodes on electronic combat ranges and range user nodes at Nellis AFB. Many obstacles to meeting the specified performance had to be overcome. When the system was delivered and installed by MODCOMP it met or exceeded the original data handling requirements and throughput. Other system features involve communication processor products from SIMPACT Inc. a San Diego company. The paper will present their involvement in delivering this solution system to ARCATA and ultimately Nellis AFB as well as all performance data achieved from this multi-company venture.

      Gaskill, David M.; Astro-Med, Inc. (International Foundation for Telemetering, 1990-11)
      Rapid technological improvements in components and manufacturing techniques have set the stage for a thorough renovation of chart recording concepts. Today, thermal array, galvanometer, electrostatic, and lightbeam recorders co-exist for reasons both historical and practical. At one time or another each has held a competitive advantage but now it is time to synthesize a new recorder standard combining the strengths of each of today’s technologies with a generous reserve for future enhancements.
    • The Research on Optimization of DPSK Errors Propagation

      Mukun, Wang; Bingxing, Xu; Tingxiag, Zhou; Harbin Institute of Technology (International Foundation for Telemetering, 1990-11)
      This paper put its focus on the errors propagation given by Differential phase shift keying (DPSK below) in industrial telemetering systems. There is analytical, comparative and calculative work about DPSK signals formed with different encoding moduses and about their errors propagation after demodulation.

      Salazar, V. P.; Franco, R. J.; Sandia National Laboratories Telemetry Department (International Foundation for Telemetering, 1990-11)
      Sandia National Laboratories Telemetry Technology Development Division has designed and fielded earth and ice penetrator instrumentation recorders for many years. Recently we developed a miniature, reusable, transient-event recorder for use in scale model penetration tests. The miniature size of the recorder permits testing of penetrators as small as 4 inches in outside diameter by 20 inches in length. The recorder can survive and record shock environments exceeding 4,000 times the acceleration of gravity (gs). Typical applications are rock, soil, and ice penetration tests launched from a gas gun developed by Advanced Projects Division III. Typical impact velocities range from 600 to 1,000 feet per second.