• An Integrated Real-Time Turbine Engine Flight Test System

      Moro, Mike; Friedman, Paul J.; Allied-Signal Aerospace Corporation; Loral Instrumentation (International Foundation for Telemetering, 1990-11)
      New developments and modifications to existing gas turbine engines require qualification through extensive ground testing followed by flight testing. An increasing work load necessitates productivity improvements in the test platform utilization and the telemetry ground station. This paper addresses the application of a compatible family of commercial offthe-shelf telemetry systems for quick-look to ensure data integrity on board the Boeing 720 test platform, and a distributed architecture ground station to serve multiple engineering disciplines through the use of an acquisition subsystem serving data to independent color graphics workstations via an Ethernet local area network.
    • An Integrated Workstation Environment for Operational Support of Satellite System Planning & Analysis

      Hamilton, Marvin J.; Sutton, Stewart A.; The Aerospace Corporation (International Foundation for Telemetering, 1990-11)
      This paper describes a prototype integrated environment, the Advanced Satellite Workstation (ASW), that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbooks and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication.

      Blasdel, Arthur N., Jr.; Hartman, Wayne; Ford Aerospace Corporation (International Foundation for Telemetering, 1990-11)
      Ford Aerospace Corporation has been working for several years on Independent Research and Development (IR&D) that brings artificial intelligence technology to bear on space mission operations tasks. During this time, we have developed a flexible and sophisticated tool, called Paragon, that supports knowledge representation in a very intuitive and easy to maintain manner. As a fallout of our knowledge representation approach in Paragon, we get a simulation capability that supports testing and verification of the model. This same capability can be used to support various space operations training and readiness activities (1). Recently, we became aware of the very flexible telemetry generation and display capabilities of the Loral 500 system, and found that we could combine our Paragon modeling and simulation capability with the Loral equipment to create an intelligent telemetry simulator that has the potential to dramatically reduce acquisition, development, installation, and maintenance costs for space system simulation. This paper discusses the features and capabilities of the Paragon/Loral 500 Intelligent Telemetry Simulator (ITS) as well as the prototyping we have accomplished to date.
    • International Telemetering Conference Proceedings, Volume 26 (1990)

      International Foundation for Telemetering, 1990-11

      Ng, Wai-Hung; Leung, Tony; The Aerospace Corporation (International Foundation for Telemetering, 1990-11)
      Recently, many satellite systems started to employ reflective-array compressor (RAC) to demodulate their M-FSK communication signals. Because the RAC’s time delay varies with the temperature, pilot-tones are usually introduced as the operational reference. In this paper, the basic chirp Fourier transform (CFT) is briefly reviewed. Then, investigation into possible pilot-tone interference caused by various chirp signals with RAC’s dispersive delay properties is presented and discussed.

      Tubbs, Casey; SCI Technology, Inc. (International Foundation for Telemetering, 1990-11)
      Asynchronous data sources such as those associated with Space Based Radar create a unique problem for Time Division Multiplexed (TDM) Pulse Code Modulation (PCM) frame formats. The problem consists of data arrival based on external occurrences such as target tracking, and not due to sampling polls from internal sequencers. Reserved time slots for asynchronous data must be provided within the synchronous TDM telemetry stream. This increases the required bandwidth to transfer collected data to ground sites proportional to the worst case arrival rate of asynchronous data and the maximum latency allowed for the application. Asynchronous data is readily handled by the Consultative Committee for Space Data Systems (CCSDS) recommended formats without the need to increase the bandwidth disproportionately. The recommendation maintains the ability to provide synchronous telemetry data collection and transmission provided by the TDM PCM frame formats. This paper provides an implementation of CCSDS recommendations and addresses the methodology of merging asynchronous and synchronous data sources without the prerequisite increase in bandwidth associated with purely synchronous TDM approaches. Additional implementation details are provided for the implementation of a Telemetry Operation Procedure (TOP) to downlink error free telemetry frames. The TOP is not currently supported within the CCSDS recommendation. The implementation is provided through the Micro Packaged Data Acquisition and Control Systems developed by SCI Technology in Huntsville, Alabama.

      PENHARLOW, DAVID; AYDIN VECTOR DIVISION (International Foundation for Telemetering, 1990-11)
      The new generation of advanced tactical aircraft and missiles places unique demands on the electronic and mechanical designs for flight test instrumentation, high bit rates, operating temperature range and system interconnect wiring requirements. This paper describes a microminiature PCM distributed data acquisition system with integral signal conditioning (MMSC) which has been used in advanced aircraft and missile flight testing. The MMSC system is constructed from microminiature, stackable modules which allow the user to reconfigure the system as the requirements change. A second system is also described which uses the same circuitry in hermetic hybrid packages on plug-in circuit boards.

      Malone, Erle W.; Breedlove, Phillip; Boeing Aerospace, Seattle, WA; Loral Conic, San Diego, CA (International Foundation for Telemetering, 1990-11)
      A telemetry system which integrates MIL-STD-1553 bus data, dual-simplex bus data, vehicle performance data, and environmental sensor data multiplexing involves many interfacing constraints. The engineering design considerations and hardware constraints required to implement this system are presented in this paper.

      Vander Stoep, Donald R.; Ball Systems Engineering Division, San Diego, CA (International Foundation for Telemetering, 1990-11)
      Sensor slaying consists of pointing a secondary (slave) sensor to a target vehicle, coordinates of which are defined by measurements from a primary (master) sensor or set of master sensors. For typical range applications, the secondary sensor does not possess an autonomous tracking capability; thus, pointing commands for the secondary sensors must be derived from an external source, i.e., the primary sensor or system. A common example of a range slaving system consists of an optical sensor (e.g., a cine- of video theodolite) slaved to a tracking radar. In this instance, radar measurements (range, azimuth, elevation) are typically converted into a cartesian set (x, y, z), followed by the computation of the azimuth and elevation angles from the theodolite site to the designated point. These angles define commands for theodolite pointing.
    • Modified Instrumentation for Torsional Impulse Projectiles

      PETRELLESE, JOSEPH, JR.; US ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER (International Foundation for Telemetering, 1990-11)
      The demand for test projectiles instrumented for gathering in-bore torsional impulse data has been steadily increasing. A test projectile consists of a telemeter, 12 accelerometers, and the remaining necessary hardware. Cost, availability, and survivability of commercial accelerometers being used have become a major concern. In-house testing of a new source and different technology accelerometer show a cost benefit, higher availability and a much higher survivability rate. This paper outlines the recent progress of qualifying a new source and different technology accelerometer, which leads to a modification of the current Torsional Impulse test projectile, along with potential developments to insure a more cost effective, available, and reliable test projectile to be used in future torsional impulse tests.
    • Modulation Index and FM Improvement for Analog TV

      Baylor, J. Thomas; Loral Conic (International Foundation for Telemetering, 1990-11)
      The concepts of modulation index and FM improvement are simple and straightforward when the modulating signals are sinesoidal. For a complex baseband waveform such as analog TV, the FM improvement may be seriously underestimated. A method for computer simulation of video waveforms and the resulting spectra are presented.

      Ferguson, D.; Meyers, D.; Gemmill, P.; Pereira, C.; Honeywell Systems and Research Center; Army Armament Research, Development and Engineering Center (International Foundation for Telemetering, 1990-11)
      Instrumentation for taking dynamic in-bore measurements during high accelerations typically has been limited to accelerations under 20,000 g’s. In munition development and testing, there is a need for telemetry instrumentation that can relay dynamic performance data at 100,000 g’s. This paper describes the development and testing of a stable, regulated, telemetry transmitter that has been successfully tested to 67,400 g’s.

      Yovanof, Gregory S.; Kodak Berkeley Research (International Foundation for Telemetering, 1990-11)
      The ever-increasing demands of the modern telemetry system for the transmission of high resolution digital video data at primary and sub-primary bit rates necessitate the employment of efficient motion-compensated video coding algorithms. This paper reviews the current status of motion compensation techniques. The two major classes of motion estimation methods currently being used for predictive coding of time varying images: block matching and pel-recursive algorithms are treated in thorough detail. Examples of practical video coding systems using motion compensated compression are exhibited. Recent advances in the VLSI technology have made it possible to fit the entire circuitry required for a motion compensation algorithm onto a single chip.

      Berdugo, Albert; Ricker, William G.; Aydin Vector Division (International Foundation for Telemetering, 1990-11)
      Increased data throughput demands in military and avionics systems has led to the development of an advanced, All-Bus MIL-STD-1553 Instrumentation Monitor. This paper discusses an airborne unit which acquires the information from up to 8 dual-redundant buses, and formats the data for telemetry, recording or real-time analysis according to the requirements of IRIG-106-86, Chapter 8. The ALBUS-1553 acquires all or selected 1553 messages which are formatted into IRIG-compatible serial data stream outputs. Data is time tagged to microsecond resolution. The unit selectively transmits entire or partial 1553 messages under program control. This results in reduced transmission bandwidth if prior knowledge of 1553 traffic is known. The ALBUS also encodes analog voice inputs, discrete userword inputs and multiplexed analog (overhead) inputs. The unit is provided in a ruggedized airborne housing utilizing standard ATR packaging,

      Xi-Hua, Li; Xinan Electronic Engineering Institute, China (International Foundation for Telemetering, 1990-11)
      This paper describes the technical principle that signals conversion, data-processing and data storage are directly carried out without filling up with the reference pulse for PPM and PPK (pulse position keying). By means of analysis for typical frame structure of PPM/PPK signals, a variety of math models of signal time relationship of the system were found, and based on this, a engineering way and a principle block diagram for signals conversion, data processing and data storage were given out.

      Qiu-Cheng, Xie; Zhong-Kui, Lei; Nanjing Aeronautical Institute, Nanjing, China (International Foundation for Telemetering, 1990-11)
      In this paper, twenty-four optimum group synchronization codes (N=31 to 54) for PCM telemetry systems are presented. These optimum codes are the newest development at the category of optimum group synchronization codes up to now in the world.

      COOK, JAMES H., JR.; KOSTER, A. RENEE; SCIENTIFIC-ATLANTA, INC. (International Foundation for Telemetering, 1990-11)
      The design and performance of a 1435 MHZ to 2600 MHZ ESCAN1 feed will be discussed. The radiation characteristics of a very small (<10 wavelengths) reflector antenna will be presented. The ESCAN tracking concept offers a significant improvement in the effective gain, sidelobes and tracking performance for broadband telemetry trackers over previous, low-cost approaches. The tradeoffs associated with the optimization of the ESCAN antenna’s radiation performance will be presented along with a comparison of conical scan and single channel monopulse performance. The tradeoffs will include an analysis of the limitations in performance due to central blockage, aperture illumination, spillover, and coma effects of an “effective” off-axis feed for a small, paraboloidal reflector antenna.

      McGiven, Fred A.; TIW Systems Inc. (International Foundation for Telemetering, 1990-11)
      TIW Systems has developed a modern, compact, modular, antenna controller (ACU) for telemetry, tracking, and communications antennas. The controller combines the functions of an antenna control unit, a position conversion/display chassis, and a polarization control unit. By using plug-in cards, a tracking receiver, autophasing control unit, tracking synthesizer, and other functions can be added. Depending on the requirements, the tracking receiver can be a simple wide-band steptrack receiver, or can be a full function phase-locked-loop (PLL) autotrack receiver. In the past, all this capability would have taken a large portion of an entire equipment rack. The unit uses modern microprocessor technology for digitally controlling the position and rate of the antenna. Advanced tracking modes and remote control can be added by connecting an external computer (PTIC) to one of the ACU’s serial ports. The PTIC also provides a user friendly operator interface through the use of high resolution color graphics and easy to understand menus.
    • A New Method for Refinning Orbit of CPS Satellite Using Phase Measurement

      Sheng, Liu Dong; Beijing Institute of Satellite (International Foundation for Telemetering, 1990-11)
      This paper developed a new method of refinning GPS satellite orbit using phase measurement without knowing the GPS codes. Because this approach have no connection with any particular physical model, avoiding introducing any dynamic error, this method make it possible to get high precision GPS satellite orbit. A simulation computation has been conducted and gave an encouraging result.
    • An Object-Oriented Telemetry Format Management (TFM) System

      Li, Tientien; TACT Inc. (International Foundation for Telemetering, 1990-11)
      The telemetry format is a key piece of information utilized by both the flight segment and the ground segment of a mission. During the evolution of a mission, the telemetry format is usually going through many changes and refinements. Sometimes, a format may even evolve from mission to mission. The conventional Relational Data Base Management Systems (RDBMS) do not work well with telemetry formats because of the multidimensional nature of most telemetry formats. To reduce the complexity of managing dynamic telemetry formats, an innovative Telemetry Format Management (TFM) system has been designed. The TFM system utilizes new object-oriented concepts in managing the creation, the evolution, and the utilization of telemetry formats. It supports common telemetry formats including: Time-Division Multiplexed (TDM) telemetry formats and packet telemetry formats. By using the TFM system, one can greatly simplify most tasks associated with the development of telemetry formats. This paper describes the architecture, design concepts, and operational philosophy of the TFM system.