Cirineo, Tony; Troublefield, Bob; NAWCWPNS (International Foundation for Telemetering, 1995-11)
      This paper describes an Engineering Development Model (EDM) for the Standard Interoperable Datalink System (SIDS). This EDM represents an attempt to design and build a programmable system that can be used to test and evaluate various aspects of a modern digital datalink. First, an investigation was started of commercial wireless components and standards that could be used to construct the SIDS datalink. This investigation lead to the construction of an engineering developmental model. This model presently consists of wire wrap and prototype circuits that implement many aspects of a modern digital datalink.

      Kronberg, F.; Ringrose, P.; Losik, L.; Biroscak, D.; Malina, R. F. (International Foundation for Telemetering, 1995-11)
      The UC Berkeley Extreme Ultraviolet Explorer (EUVE) Science Operations Center (ESOC) is developing and implementing knowledge-based software to automate the monitoring of satellite payload telemetry. Formerly, EUVE science payload data were received, archived, interpreted, and responded to during round-the-clock monitoring by human operators. Now, knowledge-based software will support, augment, and supplement human intervention. In response to and as a result of this re-engineering project, the creation, storage, revision, and communication of information (the information flow process) within the ESOC has been redesigned. We review the information flow process within the ESOC before, during, and after the re-engineering of telemetry monitoring. We identify six fundamental challenges we face in modifying the information flow process. (These modifications are necessary because of the shift from continuous human monitoring to a knowledge-based autonomous monitoring system with intermittent human response.) We describe the innovations we have implemented in the ESOC information systems, including innovations in each part of the information flow process for short-term or dynamic information (which changes or updates within a week) as well as for long-term or static information (which is valid for more than a week). We discuss our phased approach to these innovations, in which modifications were made in small increments and the lessons learned at each step were incorporated into subsequent modifications. We analyze some mistakes and present lessons learned from our experience.
    • Developing Communication and Data Systems for Space Station Facility Class Payloads

      Hazra, Tushar K.; Sun, Charles; Mian, Arshad M.; Picinich, Louis M.; NASA (International Foundation for Telemetering, 1995-11)
      The driving force in modern space mission control has been directed towards developing cost effective and reliable communication and data systems. The objective is to maintain and ensure error-free payload commanding and data acquisition as well as efficient processing of the payload data for concurrent, real time and future use. While Mainframe computing still comprises a majority of commercially available communication and data systems, a significant diversion can be noticed towards utilizing a distributed network of workstations and commercially available software and hardware. This motivation reflects advances in modem computer technology and the trend in space mission control today and in the future. The development of communication and data involves the implementation of distributed and parallel processing concepts in a network of highly powerful client server environments. This paper addresses major issues related to developing and integrating communication and data system and the significance for future developments.
    • Common Test and Training Range Architecture

      Pace, Richard; Walters, Charles E. (International Foundation for Telemetering, 1995-11)
      To address the concerns of a declining defense budget, duplicate range capabilities, and applications of new technologies, the Deputy Director, Test Facilities and Resources, Test, Systems Engineering and Evaluation Directorate, Office of the Secretary of Defense (OSD), initiated the Common Test and Training Range Architecture (CTTRA) Workshop project. The development of a common test and training range architecture requires a series of workshops designed to apply the expertise of the test and training ranges and the installed systems test facilities (ISTF) communities to the challenges of architecture development and interface standardization. A common range architecture with standardized interfaces will facilitate asset sharing between the Services, increase the industry-government dual-use potential of OSD's test and training range facilities, and lower the cost of testing. Further, common range interfaces will allow the efficient integration of new instrumentation and simulations at minimum cost. To support development of the CTTRA, there have been three workshops, each expanding the accomplishments of the previous workshop. The first workshop was conducted 20-22 April 1994. The other workshops were held 12-14 October 1994 and 21-24 February 1995. The goals of the workshop process are to: • Develop a common test and training range architecture that supports the requirements of the test, training, and installed systems test facility communities • Identify areas with the potential to yield near-term interface standardization benefits. • Identify potential OSD Central Test and Evaluation Investment Program (CTEIP) projects. Thus far, the workshops have developed a top level and second level candidate CTTRA, identified areas for interface standardization, and established standing working groups responsible for continuing development of CTTRA and selected areas for interface standardization.

      Maurer, Ricky L.; Naval Air Warfare Center Aircraft Division (International Foundation for Telemetering, 1995-11)
      Satellite transmission systems have proven themselves very effective in a variety of applications. One such application is the transmission of telemetry (TM) data and associated information in a near real-time environment. This paper describes the satellite data relay system currently utilized by the Telemetry Data Center at Patuxent River, Maryland and the corresponding remote receiving site, and discusses the performance of this system.

      Glenn, Tom; Chavez, Tomas; Toole, Michael T.; Markwardt, Jack (International Foundation for Telemetering, 1995-11)
      The Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile Defense (TMD) weapon systems to defend against the rapidly expanding ballistic missile threat. The tactical ballistic missile threats include systems with range capabilities greater than 1000 kilometers. The development and testing of systems such as the Patriot Advanced Capability 3 (PAC-3), the Theater High Altitude Area Defense (THAAD), Navy Area Defense, and the System Integration Tests (SIT) to address the interoperability of this family of systems, will require the development of the Transportable Range Augmentation and Control System for Multiple Shot Engagements (TRACS - MSE). Congress has mandated that these systems be tested in multiple simultaneous engagements. These systems will be tested at several ranges to meet all the developmental and operational testers' needs. Potential range locations include White Sands Missile Range (WSMR), Kwajalein Missile Range (KMR), the Pacific Missile Range Facility (PMRF) and the Gulf Range at Eglin Air Force Base. Due to the long distances separating the target launch site and the interceptor site, the TRACS - MSE will be required at multiple sites for each range used. To be cost effective, transportable systems should be developed to augment existing capabilities. Advances in Global Positioning System (GPS) technology and high data rate receivers make telemetry based solutions attractive. This article will address the requirements for range safety, for Time, Space, Position Information (TSPI) collection and processing requirements to support a TRACS - MSE capability.

      Qun, Wu; Jinghui, Qiu; Shaof an, Deng (International Foundation for Telemetering, 1995-11)
      In this paper, a small-sized low-noise integrated block downconverter (LNB) used for Ku-band direct reception from broadcasting satellites (DBS) is proposed. The operating frequency of the LNB is from 11.7 to 12.2GHz. The outlook dimension is 41 X 41 X 110mm^3. Measured results show that the average gain of the LNB is 57dB, and noise figures are less than 1.7dB. It has been found that clear TV pictures have been received using the LNB for the experiment of receiving the "BS-2b" (Japanese broadcasting satellite) at Harbin region, Heilongjiang Province, P. R. China.

      Augustin, E. P.; Dunn, D. S.; Posada, J. F.; Sullivan, A.; Technical Systems Associates, Inc. (International Foundation for Telemetering, 1995-11)
      This paper describes a novel Radiating Antenna Digital Pattern Analysis Test system (RADPAT). The RADPAT system consists of a portable computer and a compact electronic module (EM) that interfaces to the antenna under test . The EM has standardized inputs and outputs that make it easy to adapt to any antenna or antenna system. In addition to functioning as a standard radiation pattern recorder, the RADPAT system can record conically scanning (CONSCAN), single channel monopulse, or sequential lobing patterns with only one sweep per axis . Since the radiation pattern is recorded digitally, it can automatically extract actual system data such as the error slope, crosstalk, 3 or 10 dB beamwidths, sidelobe levels, boresight shift, etc.. The briefcase size RADPAT system is portable, weighing only 18 lbs (8 kg). This can be a significant advantage for either verification of system parameters or for troubleshooting a component or system problem . Thus, the RADPAT system combined with a standard pattern receiver or a telemetry receiver can provide instantaneous, on-site evaluation of the radiation characteristics of an installed antenna system.

      Cullen J. M.; Keller, Ed; Eglin Air Force Base (International Foundation for Telemetering, 1995-11)
      The Instrumentation Technology Branch of Wright Laboratory Armament Directorate (WL/MNSI), has successfully completed an Exploratory Development (6.2) program to develop Subminiature Telemetry (SMT). SMT is a flexible, programmable telemeter with self calibration, power control and Direct Sequence Spread Spectrum modulation. The development program successfully demonstrated the ability of the SMT system to collect up to 64 analog and/or 128 digital discrete signals with programmable gain, bandwidth and offset. The program demonstrated a spread spectrum multiple-access technique that allows for simultaneous transmission and receipt of up to 96 different telemetry units within a 100 MHz telemetry band. WL/MNSI is conducting an Advanced Technology Development (6.3) program to continue development in this area. An air-worthy 4 channel spread spectrum demodulator was developed to support the SMT program but it is too costly for ground applications. The goals of this effort are to reduce the demodulator cost by a factor of 10 while increasing the capability for simultaneously processing data from 24 telemetry units and to support the first Technology Transition Plan (TTP) between WL/MN and the Air Force Development Test Center (AFDTC). The TTP will facilitate the transition of SMT spread spectrum technology to AFDTC for mission support over the next three years.

      Law, Eugene L.; NAWCWPNS (International Foundation for Telemetering, 1995-11)
      This paper will present and compare several definitions of telemetry radio frequency (RF) signal bandwidth. Measured spectra for different signals will be presented. The bandwidths of these signals will then be determined and measurement methods will be discussed. This discussion will include the effects of spectrum analyzer resolution bandwidth, video bandwidth and detector type. Finally, a proposed spectral mask will be discussed. This spectral mask can be used to calculate the required attenuation for a given frequency offset from the center frequency. The required attenuation is a function of the the bit rate or maximum frequency of interest and the transmitter power. This spectral mask is proposed to be part of the next edition of the Telemetry Standards, Inter-Range Instrumentation Group (IRIG) Standard 106.

      Thursby, William R. Jr; Shirley, Benjamin M.; Eglin Air Force Base (International Foundation for Telemetering, 1995-11)
      Eglin Air Force Base (AFB) plans to demonstrate subminiature telemetry (SMT) spread spectrum technology, via an upgraded prototype SMT system, to validate its cost-effectiveness for both Department of Defense (DoD) and commercial use. The goal is to develop new and/or modify current SMT instrumentation using existing production methods to provide increased capabilities at lower costs and reduced size. The transmitter is to require less than 2 cubic inches of space and have a cost goal of $500/unit "in quantity." The cost goal of a ground-based, 24-channel capable ground receiver is $4000/unit "in quantity". The SMT project as well as its schedule, flight and ground demonstrations, validation criteria and goals, and various benefits are discussed.

      Osborne, William P.; Ara, Sharmin; New Mexico State University (International Foundation for Telemetering, 1995-11)
      The national telemetry ranges are being pushed to provide higher data rate telemetry services by users with increasingly complex test procedure for increasingly complex weapon systems. At the same time they are having trouble obtaining more spectrum in which to provide these higher rates because of the demand for spectrum in SHF range from various mobile/cellular Personal Communications Services (PCS) as well as congress’s desire to auction spectrum and to transfer as much spectrum as possible to commercial uses. In light of these pressures the industry is in need of a modulation standard that will out perform the existing PCM/FM standard. The motivation for the present review and analysis of the performance of various coded/uncoded modulation schemes arises from this issue. Comparison of the performance of these schemes will be utilized in the following work to find a suitable solution to the existing problem.
    • Optimizing Bandwidth Utilization in Packet Based Telemetry Systems

      Kalibjian, Jeffrey R.; Lawrence Livermore National Laboratory (International Foundation for Telemetering, 1995-11)
      A consistent theme in spacecraft telemetry system design is the desire to obtain maximum bandwidth utilization given a fixed transmission capability (usually due to cost/weight criteria). Extensions to basic packetization telemetry architectures are discussed which can facilitate a reduction in the amount of actual data telemetered, without loss of data quality. Central to the extensions are the establishment of an "intelligent" telemetry process, which can evaluate pending data to be telemetered, and act to compress, discard, or re-formulate data before actual transmission to ground stations.

      Xianming, Zhao; Tingxian, Zhou; Honglin, Zhao; Qun, Lu (International Foundation for Telemetering, 1995-11)
      This paper discusses an error-correcting scheme applied to a telemetry system over HF radio channel. According to the statistical properties of transmission error on HF radio channel, the scheme uses one important diffuse convolutional code, which is threshold decoded and corrects the random or burst errors. The operation of this code is explained, and a new method for word synchronization and bit synchronization is proposed. Coding and decoding, word synchronization, and bit synchronization are all activated by software program so as to greatly improve the flexibleness and applicability of the data transmission system. Test results of error-correcting are given for a variety of bit-error-rate (BER)s on HF radio channel.
    • The Merging of Multisource Telemetry Data to Support Over the Horizon Missile Testing

      Peterson, Dwight M.; Naval Warfare Assessment Division (International Foundation for Telemetering, 1995-11)
      The testing of instrumented missile systems with extended range capabilities present many challenges to existing T&E and training ranges. Providing over-the-horizon (OTH) telemetry data collection and displaying portions of this data in real time for range safety purposes are just a few of many factors required for successful instrumented range support. Techniques typically used for OTH telemetry data collection are to use fixed or portable antennas installed at strategic down-range locations, instrumented relay pods installed on chase aircraft, and instrumented high flying relay aircraft. Multiple data sources from these various locations typically arrive at a central site within a telemetry ground station and must be merged together to determine the best data source for real time and post processing purposes. Before multiple telemetered sources can be merged, the time skews caused by the relay of down-range land and airborne based sources must be taken into account. The time skews are fixed for land based sources, but vary with airborne sources. Various techniques have been used to remove the time skews associated with multiple telemetered sources. These techniques, which involve both hardware and software applications, have been effective, but are expensive and application and range dependent. This paper describes the use of a personal computer (PC) based workstation, configured with independent Pulse Code Modulation (PCM) decommutators/bit synchronizers, Inner-Range Instrumentation Group (IRIG) timing, and data merging resident software to perform the data merging task. Current technology now permits multiple PCM decommutators, each built as a separate virtual memory expansion (VME) card, to be installed within a PC based workstation. Each land based or airborne source is connected to a dedicated VME based PCM decommutator/bit synchronizer within the workstation. After the exercise has been completed, data merging software resident within the workstation is run which reads the digitized data from each of the disk files and aligns the data on a bit by bit basis to determine the optimum merged result. Both time based and event based alignment is performed when merging the multiple sources.This technique has application for current TOMAHAWK exercises performed at the Air Force Development Test Center, Eglin Air Force Base (AFB), Florida and the Naval Air Warfare Center/Weapons Division (NAWC/WD), Point Mugu, California and future TOMAHAWK Baseline Improvement Program (TBIP) testing.

      Kaiser, Julius A. (International Foundation for Telemetering, 1995-11)
      Two retrodirective antenna systems that autonomously point high gain beams to a signal source without requiring a priori knowledge of location are described. The first is a stationary phased array requiring no phase shifters or switches for its operation. The second is a steerable platform with a thinned receive array for signal acquisition and platform pointing and dish(es) to satisfy the high gain function.

      Jones, Charles H.; Edwards Air Force Base (International Foundation for Telemetering, 1995-11)
      In its simplest form an automaton can be considered a set of inputs, a process, and a set of outputs. Certainly telemetry can be thought of in this way as well. Automata theory is a cross between mathematics and computer science which considers how to precisely define the inputs, the outputs, and the process of translating the one into the other. The input to an automaton can be described using a formal grammar. Two standard bit stream encodings, PCM matrices and MIL-STD-1553, are described using grammars. An example of how a grammar can be used to decode a bit stream is given. Further, ambiguity and complexity of bit stream encodings are discussed in the context of grammars. It is thus illustrated how grammars can be used to cleanly define and decode telemetry bit streams.

      Horne, Lyman D.; Dye, Ricky G.; Brigham Young University (International Foundation for Telemetering, 1995-11)
      In an effort to determine a more accurate characterization of the multipath fading effects on telemetry signals, the BYU telemetering group is implementing an inexpensive data acquisition system to measure these effects. It is designed to measure important signals in a diversity combining system. The received RF envelope, AGC signal, and the weighting signal for each beam, as well as the IRIG B time stamp will be sampled and stored. This system is based on an 80x86 platform for simplicity, compactness, and ease of use. The design is robust and portable to accommodate measurements in a variety of locations including aircraft, ground, and mobile environments.

      Stone, Christopher E.; Flint, Keith D.; Mathis, Gregory P.; Edwards Air Force Base (International Foundation for Telemetering, 1995-11)
      Phillips Laboratory's Space Experiments Directorate (PL/SX) is operating and upgrading the laboratory's premier transportable satellite tracking station, the Mobile Ground Tracking Station (MGTS) program. MGTS supports orbital, suborbital, and aircraft missions as a range system capable of processing and recording multiple data streams. MGTS receives, processes, displays, and records satellite state-of-health data, infrared images in a variety of wavelengths, video data, and state vector solutions based on IR returns from the Miniature Sensor Technology Integration (MSTI) satellite program. The program has began in 1990 under BMDO sponsorship, with the intent to supplement existing test ranges with more flexibility in range operations. Wyle Laboratories and Systems Engineering and Management Company (SEMCO) provided the technical expertise necessary to create the first MGTS system. Autonomy and off-road capability were critical design factors, since some of the operations envisioned require deployment to remote or hostile field locations. Since inception, MGTS has supported the Lightweight Exo-Atmospheric Projectile (LEAP) sub-orbital missions, the MSTI satellite program, and Air Force wargame demonstrations. In pursuit of these missions, MGTS has deployed to White Sands Missile Range (WSMR), NM; Air Force Flight Test Center (AFFTC), Edwards AFB, CA; Vandenberg AFB, CA; Falcon AFB, CO; and NASA's Wallops Island Flight Facility, VA, to receive critical mission telemetry data conforming to both IRIG and SGLS standards. This paper will describe the evolution of the MGTS program, current hardware configurations and past and future mission scenarios for the MGTS team.

      Reed, Ryan; Long, David G.; Arnold, David V. (International Foundation for Telemetering, 1995-11)
      A scatterometer is a radar system designed to make precise measurements of the magnitude of the radar echo scattered from surface. If the measurement is made over the ocean's surface, the surface wind speed and direction can be inferred. In order to better understand the relationship between the radar return and the ocean winds we have developed a unique ultra-wide band research scatterometer known as Yscat. The Yscat radar system is computer controlled, with a separate computer collecting environmental data. During a typical deployment, such as a recently completed 7 month deployment on Lake Ontario, the radar system is required to operate unmanned for weeks at a time, collecting data at a rate of up to 2 GB per week. Controlling such a complex system, and handling such large amounts of data presents a challenging remote operation problem. We used a novel combination of personal computers, telephone controlled switches, modems, and off the shelf software packages to enable us to perform daily monitoring, trouble shooting, and data transfer via a simple telephone connection. Data was stored on 4 mm DAT tapes for weekly pickup by a technician. This paper describes the Yscat system and our approach to control, monitoring, and data storage. While our approach is relatively "low tech", it has been very cost effective. This type of approach may be of interest to other designers of unique instrumentation at remote sites.