Law, Eugene L.; NAWCWPNS (International Foundation for Telemetering, 1995-11)
      This paper will discuss the performance of pulse code modulation (PCM)/frequency modulation (FM) during frequency selective fading. Frequency selective fading occurs when the attenuation in part of the frequency band of interest is much greater than in the rest of the band of interest. The frequency selective fading model used in this paper assumes that two paths with different delays exist between the transmitter and receiver (multipath). The two-path model was simulated in the laboratory and the effects of frequency selective fading on the radio frequency (RF) spectrum and on the waveforms at the output of the FM demodulator were measured. A mathematical model was also used to predict the effects of frequency selective fading. The predicted waveshapes are compared with the laboratory data. A simple demodulator which alleviates the effects of frequency selective fading on PCM/FM at moderate signal-to-noise ratios (SNRs) will be described. This demodulator is created by detuning the telemetry receiver by a frequency equal to approximately one-half of the intermediate frequency (IF) bandwidth and using the receiver’s amplitude modulation (AM) detector output rather than the FM detector output. The performance of this offset AM demodulator will be compared with the performance of an FM demodulator. Frequency selective fades measured in real-world environments will be also presented.