• International Telemetering Conference Proceedings, Volume 32 (1996)

      International Foundation for Telemetering, 1996-10
    • Digitally Recorded Data Reduction On a PC Using CAPS 2.0

      Rarick, Michael J.; Lawrence, Ben-z (International Foundation for Telemetering, 1996-10)
      The Common Airborne Processing System (CAPS) provides a general purpose data reduction capability for digitally recorded data on a PC. PCM or MIL-STD-1553 data can be imported from a variety of sources into the CAPS standard file format. Parameter dictionaries describing raw data structures and output product descriptions describing the desired outputs can be created and edited from within CAPS. All of this functionality is performed on an personal computer within the framework of the graphical user interface provided by Microsoft Windows. CAPS has become the standard for digitally recorded data reduction on a PC at Eglin AFB and many other sites worldwide. New features, such as real-time inputs and graphical outputs, are being added to CAPS to make it an even more productive data reduction tool.
    • Twenty-First Century Live Play - Recent Developments

      Reid, Robert J.; Callaghan, Nancy (International Foundation for Telemetering, 1996-10)
      The 21st Century Live Play (21CLP) program is developing a mobile, low cost, wireless networking system that supports applications to provide a number of services for military use. 21CLP is a joint Defense Advanced Research Projects Agency (DARPA) and Central Test and Evaluation Investment Program (CTEIP) project. The Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT), Code 382 has been assigned as the program manager for a T&E version of the 21CLP system. The 21CLP vision is a common instrumentation function that links, in real-time, live land, air and maritime entities together with a virtual battlespace in any location where forces are deployed or being trained, weapons systems are being tested and evaluated, and ultimately where missions are being conducted. This vision will be realized with an embedded, mobile, distributed, untethered system that requires little or no site preparation.
    • RECONFIGURABLE GATEWAY SYSTEMS FOR SPACE DATA NETWORKING

      Davis, Don; Bennett, Toby; Costenbader, Jay; TSI TelSys, Inc. (International Foundation for Telemetering, 1996-10)
      Over a dozen commercial remote sensing programs are currently under development representing billions of dollars of potential investment. While technological advances have dramatically decreased the cost of building and launching these satellites, the cost and complexity of accessing their data for commercial use are still prohibitively high. This paper describes Reconfigurable Gateway Systems which provide, to a broad spectrum of existing and new data users, affordable telemetry data acquisition, processing and distribution for real-time remotely sensed data at rates up to 300 Mbps. These Gateway Systems are based upon reconfigurable computing, multiprocessing, and process automation technologies to meet a broad range of satellite communications and data processing applications. Their flexible architecture easily accommodates future enhancements for decompression, decryption, digital signal processing and image / SAR data processing.
    • Distributed Interactive Simulation: The Answer to Interoperable Test and Training Instrumentation

      Kassan, Mark W. (International Foundation for Telemetering, 1996-10)
      This paper discusses Global Positioning System (GPS) Range Applications Joint Program Office (RAJPO) efforts to foster interoperability between airborne instrumentation, virtual simulators, and constructive simulations using Distributed Interactive Simulation (DIS). In the past, the testing and training communities developed separate airborne instrumentation systems primarily because available technology couldn't encompass both communities' requirements. As budgets get smaller, as requirements merge, and as technology advances, the separate systems can be used interoperably and possibly merged to meet common requirements. Using DIS to bridge the gap between the RAJPO test instrumentation system and the Air Combat Maneuvering Instrumentation (ACMI) training systems provides a defacto system-level interoperable interface while giving both communities the added benefits of interaction with the modeling and simulation world. The RAJPO leads the test community in using DIS. RAJPO instrumentation has already supported training exercises such as Roving Sands 95, Warfighter 95, and Combat Synthetic Test, Training, and Assessment Range (STTAR) and major tests such as the Joint Advanced Distributed Simulation (JADS) Joint Test and Evaluation (JT&E) program. Future efforts may include support of Warrior Flag 97 and upgrading the Nellis No-Drop Bomb Scoring Ranges. These exercises, combining the use of DIS and RAJPO instrumentation to date, demonstrate how a single airborne system can be used successfully to support both test and training requirements. The Air Combat Training System (ACTS) Program plans to build interoperability through DIS into existing and future ACMI systems. The RAJPO is committed to fostering interoperable airborne instrumentation systems as well as interfaces to virtual and constructive systems in the modeling and simulation world. This interoperability will provide a highly realistic combat training and test synthetic environment enhancing the military's ability to train its warfighters and test its advanced weapon systems.
    • Personal Positioning and Navigation System Based on GPS

      Song, Yajun; Zhang, Qishan; Beijing University of Aero & Astro. (International Foundation for Telemetering, 1996-10)
      The Global Positioning System (GPS) is a very accurate, all-weather, world wide three dimensional navigation system and it has been used in almost every field related to positioning and navigation. This paper presents a new application of GPS technology - personal positioning and navigation system. It combines VP ONCORE receiver OEM (Original Equipment Manufacture) board and an intelligent system controller, with a keyboard and a programmable LCD as its peripherals. This system can realize rich navigation functions and satisfy the need of personal use.
    • LOW COST, HIGHLY TRANSPORTABLE, TELEMETRY TRACKING SYSTEM FEATURING THE AUGUSTINE/SULLIVAN DISTRIBUTION AND POLARIZATION, FREQUENCY AND SPACE DIVERSITY

      Harwood, Peter; Wilson, Christopher; Sullivan, Arthur; Augustin, Eugene; Bradley Electronics Ltd; Technical Systems Associates, Inc. (International Foundation for Telemetering, 1996-10)
      The tracking system is part of a telemetry ground station being developed for the UK Ministry of Defence. The design objective is a self-contained transportable system for field use in a vehicle or workshop environment, so that the system components are required to be man portable. Comprehensive facilities are required for the reception, display and analysis of telemetry data from a remote 1430-1450MHz airborne source at ranges of up to 205km. Since tracking over water is a prime requirement the system must accommodate severe multipath fading. A detailed analysis of the link budget indicates that there is a major conflict between cost, portability, antenna size and the receiver complexity required to achieve a satisfactory performance margin. A baseline system is analysed using a four foot antenna. Methods for improving the performance are then considered including polarisation, frequency and space diversity coupled with alternative antenna types and configurations. The optimum solution utilises two six foot diameter shaped beam single axis antennas of unique design in conjunction with a receiving system which economically combines the elements of polarisation, frequency and space diversity.
    • Telemetry in an Automated Water Supply Control System

      Kilmer, John; White Sands Missile Range (International Foundation for Telemetering, 1996-10)
      The White Sands Missile Range (WSMR) Water Supply Control System (WSCS) controls and monitors the water wells, tanks and booster pumps located at the southern end of the missile range. Figure 1 is an overview of the WSMR water supply system. The WSCS provides water for approximately 90 square miles of the 3,700 square mile missile range. The WSCS was designed and installed in 1990 and in need of upgrading and repair. The system was evaluated and found to be only moderately functional. The WSCS consists of an IBM compatible personal computer (PC) based user interface, located at the WSMR Water Plant and Fire Dept. and industrial-type computers called Programmable Logic Controller (PLC) based stations at the Water Plant, water wells and tanks. The stations communicate over a 400 MHz radio half-duplex link. The serial message utilizes the Cyclic Redundancy Check (CRC) and Block Check Character (BBC) type of error checking. The Master station controls pumping by downloading pump settings to the slave stations. The slave stations upload data to the master such as tank level, pump status, energy usage, gallons of water pumped and various alarms. The system was analyzed and the design was found to be sound. The system did require improvements. These improvements include adding surge suppressors, software upgrades, absolute reading flow rate sensors, and providing adequate environmental cooling for the control system. Procedures for periodic maintenance and calibration of the sensors and schedules for radio equipment maintenance were also developed. Software modifications to reduce WSMR energy usage by reducing pumping during peak energy demand times are being integrated into the WSCS. The peak energy demand times are determined by historical energy usage data.
    • SPACE-BASED VISIBLE (SBV) SURVEILLANCE DATA VERIFICATION AND TELEMETRY PROCESSING

      Stokes, Grant H.; Viggh, Herbert E.M.; Pollock, J. Kent (International Foundation for Telemetering, 1996-10)
      This paper discusses the telemetry processing and data verification performed by the SBV Processing, Operations and Control Center (SPOCC) located at MIT Lincoln Laboratory (MIT LL). The SPOCC is unique among the Midcourse Space Experiment (MSX) Data Processing Centers because it supports operational demonstrations of the SBV sensor for Space-Based Space Surveillance applications. The surveillance experiment objectives focus on tracking of resident space objects (RSOs), including acquisition of newly launched satellites. Since Space Surveillance operations have fundamentally short timelines, the SPOCC must be deeply involved in the mission planning for the series of observations and must receive and process the resulting data quickly. In order to achieve these objectives, the MSX Concept of Operations (CONOPS) has been developed to include the SPOCC in the operations planning process. The SPOCC is responsible for generating all MSX spacecraft command information required to execute space surveillance events using the MSX. This operating agreement and a highly automated planning system at the SPOCC allow the planning timeline objectives to be met. In addition, the Space Surveillance experiment scenarios call for active use of the 1 Mbps real-time link to transmit processed targets tracks from the SBV to the SPOCC for processing and for short time-line response of the SPOCC to process the track of the new object and produce new commands for the MSX spacecraft, or other space surveillance sensors, to re-acquire the object. To accomplish this, surveillance data processed and stored onboard the SBV is transmitted to the APL Mission Processing Center via 1 Mbps contacts with the dedicated Applied Physics Laboratory (APL) station, or via one of the AFSCN RTS locations, which forwards the telemetry in real-time to APL. The Mission Processing facility at APL automatically processes the MSX telemetry to extract the SBV allocation and forwards the data via file transfer over a dedicated fractional T1 link to the SPOCC. The data arriving at the SPOCC is automatically identified and processed to yield calibrated metric observations of RSOs. These results are then fed forward into the mission planning process for follow-up observations. In addition to the experiment support discussed above, the SPOCC monitors and stores SBV housekeeping data, monitors payload health and status, and supports diagnosis and correction. There are also software tools which support the assessment of the results of surveillance experiments and to produce a number of products used by the SBV instrument team to assess the overall performance characteristics of the SBV instrument.
    • Open Systems Architecture in a COTS environment

      Stottlemyer, Alan R.; Hassett, Kevin M. (International Foundation for Telemetering, 1996-10)
      A distributed architecture framework has been developed for NASA at Goddard Space Flight Center (GSFC) as the basis for developing an extended series of space mission support data systems. The architecture is designed to include both mission development and operations. It specifically addresses the problems of standardizing a framework for which commercial off-the-shelf (COTS) applications and infrastructure are expected to provide most of the components of the systems. The resulting distributed architecture is developed based on a combination of a layered architecture, and carefully selected open standards. The layering provides the needed flexibility in mission design to support the wide variability of mission requirements. The standards are selected to address the most important interfaces, while not over constraining the implementation options.
    • HIGH SPEED ASYNCHRONOUS DATA MULTIPLEXER/ DEMULTIPLEXER FOR HIGH DENSITY DIGITAL RECORDERS

      Berdugo, Albert; Small, Martin; Aydin Vector Division; Calculex, Inc. (International Foundation for Telemetering, 1996-10)
      Modern High Density Digital Recorders (HDDR) are ideal devices for the storage of large amounts of digital and/or wideband analog data. Ruggedized versions of these recorders are currently available and are supporting many military and commercial flight test applications. However, in certain cases, the storage format becomes very critical, e.g., when a large number of data types are involved, or when channel-to-channel correlation is critical, or when the original data source must be accurately recreated during post mission analysis. A properly designed storage format will not only preserve data quality, but will yield the maximum storage capacity and record time for any given recorder family or data type. This paper describes a multiplex/demultiplex technique that formats multiple high speed data sources into a single, common format for recording. The method is compatible with many popular commercial recorder standards such as DCRsi, VLDS, and DLT. Types of input data typically include PCM, wideband analog data, video, aircraft data buses, avionics, voice, time code, and many others. The described method preserves tight data correlation with minimal data overhead. The described technique supports full reconstruction of the original input signals during data playback. Output data correlation across channels is preserved for all types of data inputs. Simultaneous real-time data recording and reconstruction are also supported.
    • DIGITAL FILTERING OF MULTIPLE ANALOG CHANNELS

      Hicks, William T.; Aydin Vector Division (International Foundation for Telemetering, 1996-10)
      The traditional use of active RC-type filters to provide anti-aliasing filters in Pulse Code Modulation (PCM) systems is being replaced by the use of Digital Signal Processing (DSP). This is especially true when performance requirements are stringent and require operation over a wide environmental temperature range. This paper describes the design of a multi channel digital filtering card that incorporates up to 100 unique digitally implemented cutoff frequencies. Any combination of these frequencies can be independently assigned to any of the input channels.
    • INTEGRATED TESTING AND TRAINING INSTRUMENTATION, A REALITY

      Whittemore, Tom; Applications Joint Program Office (RAJPO); Nat Raimondo (TASC) (International Foundation for Telemetering, 1996-10)
      Historically, requirements for instrumentation that supports testing and training have diverged, for a variety of reasons. In general, testing evaluates how well the system or product meets stated operational or contractual requirements, while training evaluates how well the user operates the system in the battlefield environment. Developmental testing evaluates specific system performance characteristics, both to ensure that requirements are met and to establish limits of the capability under development. For these applications, a high degree of instrumentation accuracy is usually required.
    • ANTENNA PATTERN EVALUATION FOR LINK ANALYSIS

      Pedroza, Moises; White Sands Missile Range (International Foundation for Telemetering, 1996-10)
      The use of high bit rates in the missile testing environment requires that the receiving telemetry system(s) have the correct signal margin for no PCM bit errors. This requirement plus the fact that the use of “redundant systems” are no longer considered optimum support scenarios has made it necessary to select the minimum number of tracking sites that will gather the data with the required signal margin. A very basic link analysis can be made by using the maximum and minimum gain values from the transmitting antenna pattern. Another way of evaluating the transmitting antenna gain is to base the gain on the highest percentile appearance of the highest gain value. This paper discusses the mathematical analysis the WSMR Telemetry Branch uses to determine the signal margin resulting from a radiating source along a nominal trajectory. The mathematical analysis calculates the missile aspect angles (Theta, Phi, and Alpha) to the telemetry tracking system that yields the transmitting antenna gain. The gain is obtained from the Antenna Radiation Distribution Table (ARDT) that is stored in a computer file. An entire trajectory can be evaluated for signal margin before an actual flight. The expected signal strength level can be compared to the actual signal strength level from the flight. This information can be used to evaluate any plume effects.
    • TRACKING RECEIVER NOISE BANDWIDTH SELECTION

      Pedroza, Moises; White Sands Missile Range (International Foundation for Telemetering, 1996-10)
      The selection of the Intermediate Frequency (IF) bandwidth filter for a data receiver for processing PCM data is based on using a peak deviation of 0.35 times the bit rate. The optimum IF bandwidth filter is equal to the bit rate. An IF bandwidth filter of 1.5 times the bit rate degrades the data by approximately 0.7 dB. The selection of the IF bandwidth filter for tracking receivers is based on the narrowest “noise bandwidth” that will yield the best system sensitivity. In some cases the noise bandwidth of the tracking receiver is the same as the IF bandwidth of the data receiver because it is the same receiver. If this is the case, the PCM bit rate determines the IF bandwidth and establishes the system sensitivity. With increasing bit rates and increased transmitter stability characteristics, the IF bandwidth filter selection criteria for a tracking receiver must include system sensitivity considerations. The tracking receiver IF bandwidth filter selection criteria should also be based on the narrowest IF bandwidth that will not cause the tracking errors to be masked by high bit rates and alter the pedestal dynamic response. This paper describes a selection criteria for a tracking receiver IF bandwidth filter based on measurements of the tracking error signals versus antenna pedestal dynamic response. Different IF bandwidth filters for low and high bit rates were used.
    • TELEMETRY IN A VARIED TEST AND EVALUATION ENVIRONMENT

      Norman, Michael; Defence Test and Evaluation Organisation (International Foundation for Telemetering, 1996-10)
      This paper covers the development to date of the Telemetry Facilities at the Defence Test & Evaluation Organisation located at Boscombe Down. The practices adopted to meet the many varied requirements of trials customers and some experiences gained in achieving successful implementation will be addressed. DTEO Boscombe Down, formerly known as the Aeroplane & Armament Evaluation Establishment, is the official United Kingdom Government Test Centre for military aircraft and their systems. It is part of the Defence Evaluation & Research Agency (DERA) an Agency of the Ministry of Defence. A wide range of trials are carried out by DTEO (BD) and customised telemetry installations are routinely undertaken.
    • DESIGNING AN ANTENNA/PEDESTAL FOR TRACKING LEO AND MEO IMAGING SATELLITES

      Turner, W. C.; Electro-Magnetic Processes, Inc. (International Foundation for Telemetering, 1996-10)
      This paper takes one through the processes followed by a designer when responding to a specification for an earth terminal. The orbital parameters of Low-Earth Orbiting and Medium-Earth Orbiting (LEO and MEO) satellites that affect autotracking and pointing of an antenna are presented. The do’s and don’ts of specifying (or over specifying) the antenna feed and pedestal size are discussed. The axis velocity and acceleration rates required of a Y over X and El over AZ type pedestal are developed as a function of satellite altitude, radio frequency of operation, and ground antenna terminal diameter. Decision criteria are presented leading to requiring a tilt mechanism or a third axis to cover direct and near overhead passes using an El over Az pedestal. Finally, the expressions transforming Y over X configuration position angles to azimuth and elevation axis position angles are presented.
    • DESIGN AND USE OF MODERN OPTIMAL RATIO COMBINERS

      Lennox, William M.; Microdyne Corporation (International Foundation for Telemetering, 1996-10)
      This paper will discuss the design and use of Optimal Ratio Combiners in modern telemetry applications. This will include basic design theory, operational setups, and various types of combiner configurations. The paper will discuss the advantages of pre-detection vs. post-detection combining. Finally, the paper will discuss modern design techniques.
    • TDRSS COMPATIBLE TELEMETRY TRANSMITTER

      Rupp, Greg; Cincinnati Electronics (International Foundation for Telemetering, 1996-10)
      An S-band telemetry transmitter has been developed for Expendable Launch Vehicles (ELV's) that can downlink data through NASA's Tracking and Data Relay Satellite System (TDRSS). The transmitter operates in the 2200 to 2300 MHz range and provides a number of unique features to achieve optimum performance in the launch vehicle environment: · Commandable QPSK or BPSK modulation format. · Data rates up to 10 Mbps. · Commandable concatenated coding provides superior link performance. · Premodulation filtering produces excellent spectral containment characteristics. · Phase noise of less than 3 degrees rms is maintained through launch and ascent vibration profiles. · A 30 watt nominal RF output power provides a robust RF link. · Two RF antenna output ports with commandable selection of all power out to either port or power split evenly between ports. · Operating modes and conditions of the unit can be monitored through a number of bilevel and analog outputs. · A ruggedized mechanical design provides a reliable communications link for launch vehicle environments.
    • “CAIS GROUND SUPPORT EQUIPMENT USING A LOW COST, PC-BASED PLATFORM”

      Knoebel, Robert; Berdugo, Albert; Aydin Vector Division (International Foundation for Telemetering, 1996-10)
      The Common Airborne Instrumentation System (CAIS) was developed under the auspices of the Department of Defense to promote standardization, commonality, and interoperability among flight test instrumentation. The central characteristic of CAIS is a common suite of equipment used across service boundaries and in many airframe and weapon systems. The CAIS system has many advanced capabilities which must be tested during ground support and system test. There is a need for a common set of low cost, highly capable ground support hardware and software tools to facilitate these tasks. The ground support system should combine commonly available PC-based telemetry tools with unique devices needed for CAIS applications (such as CAIS Bus Emulator, CAIS Hardware Simulator, etc.). An integrated software suite is imperative to support this equipment. A CAIS Ground Support Unit (GSU) has been developed to promote these CAIS goals. This paper presents the capabilities and features of a PC-based CAIS GSU, emphasizing those features that are unique to CAIS. Hardware tools developed to provide CAIS Bus Emulation and CAIS Hardware Simulation are also described.