• An Overview of the Joint Advanced Missile Instrumentation (JAMI) Program An OSD Central Test and Evaluation Investment Program (CTEIP) Initiative

      Scofield, Don; Powell, Dave; Macdonald, Thomas J.; NAWC-WD; TASC (International Foundation for Telemetering, 1997-10)
      JAMI, a 1997 new-start multi-year CTEIP program, will develop an integrated instrumentation package for tri-service small missile test and training applications. JAMI will provide telemetry, time-space-position information(TSPI), flight termination and end-game vector scoring in a low-cost, modular package that will allow world-wide test and training -- eliminating, in most cases, the need for range-specific (or multi-system) facilities. JAMI will incorporate GPS-based technology as the TSPI and vector scoring engine, state-of-the art telemetry, and an off-the-shelf UHF Flight Termination Receiver (FTR), and address the feasibility of a solid state programmable Safe-and-Arm. The effort will include a Test Technology Development and Demonstration (TTD&D) risk reduction effort which will: validate tri-service requirements, provide a technology demonstration, assess the applicability of advanced antenna technology, and determine the achievable performance and complexity of alternative kinematic GPS vector scoring techniques. To effect the vector scoring function, a cooperative arrangement with the target will address the mechanization of the target portion of the scoring function.
    • A modular Network Architecture for Lower Cost, High Performance Telemetry Processing

      Schumacher, Gary A.; Terametrix Systems International, Inc (International Foundation for Telemetering, 1997-10)
      There is a continuing need in the aerospace industry for lower cost and more maintainable telemetry data processing systems that can deliver a high level of performance. While systems based on the Intel family of x86 processors and Microsoft operating systems have seen increasing use in lower performance and portable applications, UNIX/VME based systems have been necessary to achieve required performance in higher end, multi-stream applications. Recent developments in the computer industry now promise lower cost alternative to these systems. With currently available technology, it is now possible to provide a powerful distributed processor architecture based entirely on commercial products. The system takes advantage of the latest of Intel Pentium processors, the PCI bus, 100BaseT Fast Ethernet, Microsoft Windows NT, ActiveX technology and NT servers. The architecture offers both current and future cost advantages for test facilities which must support a diverse set of requirements and which must maintain and support systems for many years.

      Winstead, Michael L.; Saenz, Karen J.; White Sands Missile Range (International Foundation for Telemetering, 1997-10)
      Flight Safety concerns increase proportionally with increasing missile performance. These concerns are greatest in the near launch arena where a missile has the greatest potential energy. Systems such as radar, GPS tracking systems, and optics are normally of limited use in this arena for a number of reasons. A system was required that would provide useful tracking data in the first few seconds of a missile launch. This system has met that requirement providing nominal path deviation data from the launcher out to as much as 120 seconds. The tracking system described herein uses the principle of radio interferometry to derive phase difference measurements between carefully spaced antennas. These measurements are transmitted to the Operational Display Facility and converted to a usable angular deviation plot for use by Flight Safety Personnel. This paper provides an elementary radio interferometer system background and discusses this particular system setup and use. Some detail is provided on the premission simulation and setup of the system as well as the real-time display setup and output of the final data product.

      O’Connell, Richard; Myriad Logic, Inc. (International Foundation for Telemetering, 1997-10)
      For many years VME has been the platform of choice for high-performance, real-time data acquisition systems. VME’s longevity has been made possible in part by timely enhancements which have expanded system bandwidth and allowed systems to support ever increasing throughput. One of the most recent ANSI-standard extensions of the VME specification defines RACEway, a system of dynamically switched, 160 Mbyte/second board-to-board interconnects. In typical systems RACEway increases the internal bandwidth of a VME system by an order of magnitude. Since this bandwidth is both scaleable and deterministic, it is particularly well suited to high-performance, real-time systems. The potential of RACEway for very high-performance (200 Mbps to 1 Gbps) real-time systems has been recognized by both the VME industry and a growing number of system integrators. This recognition has yielded many new RACEway-ready VME products from more than a dozen vendors. In fact many significant real-time data acquisition systems that consist entirely of commercial-off-the-shelf (COTS) RACEway products are being developed and fielded today. This paper provides an overview of RACEway technology, identifies the types of RACEway equipment currently available, discusses how RACEway can be applied in high-performance data acquisition systems, and briefly describes two systems that acquiring and capturing real-time data streams at rates from 200 Mbps to 1 Gbps using RACEway.
    • Telemetry Data Sharing Using S/MIME

      Kalibjian, Jeffrey R.; CounterSign Software, Inc. (International Foundation for Telemetering, 1997-10)
      Last year the design and implementation of a secure World Wide Web based data sharing tool which could enable geographically remote contractor teams to access flight and test telemetry data securely over the Internet was presented [1]. Key technologies facilitating this capability were the Hypertext Transfer Protocol (HTTP) and the Secure Sockets Layer (SSL) capable web browsers and web servers. This year the applicability of the Secure Multipurpose Internet Mail Extension (S/MIME) specification is being evaluated for the transport of telemetry data via secure E-mail.

      Grant, Eugene; Coleman Research Corporation (International Foundation for Telemetering, 1997-10)
      A target missile is a unique piece of test hardware. This test tool must be highly reliable, low cost and simple and must perform any task that the developing interceptor missile planners require. The target missile must have ample power and guidance resources to put the target in a specified place in the sky at a desired time. The telemetry and measurement system for the target missile must have the same requirements as its interceptor missile but must be flexible enough to accept new requirements as they are applied to the target and its interceptor. The United States Army has tasked Coleman Aerospace to design and build this type of target missile. This paper describes and analyzes the telemetry and instrumentation system that a Hera target missile carries. This system has been flying for the past two years, has completed seven out of seven successful test flights and has accomplished all test objectives to date. The telemetry and instrumentation system is an integral part of the missile self-test system. All preflight checks and flight simulations are made with the on-board three-link telemetry system through a radio frequency (RF) link directly through the missile antenna system to a ground station antenna. If an RF transmission path is not available due to test range restrictions, a fiber-optic cable links the pulse code modulator (PCM) encoder to the receiving ground stations which include the bitsync, decommutator and recorders. With this capability, alternative testing is not limited by RF test range availability. The ground stations include two mobile stations and a factory station for all testing including preflight testing of the missile system prior to flight test launches. These three ground stations are built in a single configuration with additional equipment in the mobile units for use at remote locations. The design, fabrication, testing and utilization of these ground stations are reviewed. The telemetry system is a modification of the classical PCM system and will operate with its interceptor missile at least into the first decade from the year 2000.

      Brown, Barbie; Ghuman, Parminder; Medina, Johnny; Wilke, Randy; NASA; Century Computing Inc. (International Foundation for Telemetering, 1997-10)
      The international space community, including National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Japanese National Space Agency (NASDA) and others, are committed to using the Consultative Committee for Space Data Systems (CCSDS) recommendations for low earth orbiting satellites. With the advent of the CCSDS standards and the availability of direct broadcast data from a number of current and future spacecraft, a large number of users could have access to earth science data. However, to allow for the largest possible user base, the cost of processing this data must be as low as possible. By utilizing Very Large Scale Integration (VLSI) Application-Specific Integrated Circuits (ASIC), pipelined data processing, and advanced software development technology and tools, highly integrated CCSDS data processing can be attained in a single desktop system. This paper describes a prototype desktop system based on the Peripheral Component Interconnect (PCI) bus that performs CCSDS standard frame synchronization, bit transition density decoding, Cyclical Redundancy Check (CRC) error checking, Reed-Solomon decoding, data unit sorting, packet extraction, annotation and other CCSDS service processing. Also discussed is software technology used to increase the flexibility and usability of the desktop system. The reproduction cost for the system described is less than 1/8th the current cost of commercially available CCSDS data processing systems.

      Mirchandani, Chandru; Daniel, Kenneth Jr; Nguyen, Diem; Hilinski, Stan; NASA (International Foundation for Telemetering, 1997-10)
      NASA’s use of high bandwidth packetized Consultative Committee for Space Data Systems (CCSDS) telemetry in the Earth Observing System (EOS) mission presents a great challenge to ground data system developers. The EOS mission calls for high data rate interfaces and small packet sizes which would dramatically increase the real-time workload on ground packet processing systems. NASA’s Goddard Space Flight Center (GSFC) has been developing packet processing subsystems for over a decade. This paper will discuss the design of a high-rate telemetry test system and a simulation software package. The system will support CCSDS telemetry formats and perform frame synchronization, error detection and correction, packet reassembly and sorting, error checking, and data set creation. In addition, a highly automated operation environment is designed to minimize human intervention in control and monitoring, and data distribution. The design is based on a Very Large Scale Integration (VLSI) Level Zero Processing (LZP) System technologies, VLSI telemetry data simulation and processing functional components, Object-Oriented Design methodologies, C++ programming environment, shareware and Open Software Foundation (OSF)/Motif-based Graphical User Interfaces (GUI).

      Reagan, J. A.; Schooley, L. C.; Dean, A.; Goisman, S.; King, B.; Ohnstad, M.; Raby, S.; University of Arizona (International Foundation for Telemetering, 1997-10)
      This student paper was produced as part of the team design competition in the University of Arizona course ECE 485, Radiowaves, and Telemetry. It describes the design of a telemetry support package for interplanetary exploration. Control and processing of telemetric signals between an earth based control station, an exploratory orbiter and probe pods are the focus of this design. Using this design data retrieval is achieved at a highly reliable rate of 1 error in 10^-10 bits. The exploratory orbiter, carrying a payload of probes, is launched and proceeds along its predetermined trajectory. Commands from the earth-based control station is used to send the orbiter to planetary destinations. The craft then establishes a stable non-geosynchronous orbit. Several probe pods are launched towards the planet at predetermined locations. These probe pods collect and send data, as well as system monitoring information to the orbiting craft. The orbiting craft then retrieves the signals generated by all pods and relays that information to an earth-based control station.
    • Payload Data Analyzer and Payload Data Generator System for Space Station Integration and Test

      Werner, Jeffrey M.; NASA (International Foundation for Telemetering, 1997-10)
      To support the processing of International Space Station (ISS) Payloads, the Kennedy Space Center (KSC) had the need to develop specialized test and validation equipment to quickly identify interface problems between the payload or experiment under test and the communication and telemetry downlink systems. To meet this need, the Payload Data Analyzer (PDA) System was developed by the Data Systems Technology Division (DSTD) of NASA’s Goddard Space Flight Center (GSFC) to provide a suite of troubleshooting tools and data snapshot features allowing for diagnosis and validation of payload interfaces. The PDA System, in conjunction with the Payload Data Generator (PDG) System, allow for a full set of programmable payload validation tools which can quickly be deployed to solve crucial interface problems. This paper describes the architecture and tools built in the PDA which help facilitate Space Station Payload Processing.

      Harrison, Keith; Blevins, William; AlliedSignal Technical Services Corporation (International Foundation for Telemetering, 1997-10)
      The Low Earth Orbit Terminal (LEO-T) developed by AlliedSignal for NASA Wallops is a fully autonomous satellite tracking system which provides a reliable, high quality, satellite data collection and dissemination service. The procurement was initiated by NASA, in an effort to provide more tracking capacity with a decreasing budget. A large mission set of NASA satellites in the next decade will not require the performance of existing large aperture systems. NASA is planning to use the larger aperture antennas to only support those missions needing the higher performance. The remainder of the missions will be supported with the smaller LEO-Ts, which are smaller, significantly less expensive, and fully automated. The procurement is also an attempt at a first step towards fostering commercialization and privatization of small station acquisition and services. The system design features a modular architecture to simplify integration and to support affordable future expansion. This paper begins with a brief summary of the LEO-T program, then provides the design details and capabilities of the LEO-T system.

      Youssef, Ahmed H.; McNamee, Stuart A.; Bowman, Dalphana; Edwards Air Force Base (International Foundation for Telemetering, 1997-10)
      This paper describes the status of the Edwards Digital Switch (EDS) [1] and the success of the Digital Switch Sustainment Program (DSSP); a multi-service program aimed at cost-effective means for providing maintenance and development of an advanced digital switching system. This digital communications switching system is deployed at the mission control centers of Edwards AFB, Eglin AFB, and China Lake Naval Air Warfare Center (NAWC). Each system provides the test ranges with mission-critical voice communications and Time Space Position Information (TSPI) switching. Through user-friendly Graphical User Interfaces (GUIs), the switch provides exceptional resource management of radios, telephones, user positions, secure communications, radars, trackers, 4-wire Ear & Mouth (E&M) devices, subscriber services, and other equipment. Developed using commercial equipment, such as the Lucent Technologies Digital Access and Cross-Connect System (DACS) II, the digital switch can integrate and interface with the technologies of other test ranges and customers. The DSSP sustaining engineering contract, a $10M contract awarded in 1997, is a multi-service effort in supporting cost effective maintenance and enhancement for the systems’ software and hardware. Eglin and China Lake have agreed to participate in a Digital Switch Working Group (DSWG) to ensure that this configuration management is in place and that all players follow the same system migration path. These ranges and other interested ranges that agree to purchase systems off the contract and participate in the working group will continue to derive benefits by reducing overhead and eliminating the duplication of effort involved in separate endeavors.

      Chalfant, Timothy A.; Irving, Charles E.; Edwards Air Force Base (International Foundation for Telemetering, 1997-10)
      The system throughput capacities of modern data systems exceed the bit rate capacity of current range telemetry capabilities. Coupling this with the shrinking spectrum allocated for telemetry results in a serious problem for the Test, Training, and Space telemetry users. Acknowledging this problem, the Department of Defense (DoD) has embarked on an aggressive improvement and modernization program that will benefit both the government and commercial range providers and users. The ADVANCED RANGE TELEMETRY (ARTM) program was created and funded by the Central Test and Evaluation Investment Program (CTEIP) under the Office of the Secretary of Defense, Undersecretary for Acquisition and Technology to address this problem. The ARTM program goals are to improve the efficiency of spectrum usage by changing historical methods of acquiring telemetry data and transmitting it from systems under test to range customers. The program is initiating advances in coding, compression, data channel assignment, and modulation. Due to the strong interactions of these four dimensions, the effort is integrated into a single focused program. This paper describes the ARTM program and how academia research, emerging technology, and commercial applications will lay the foundation for future development.
    • Smart Sensor Network System

      Gen-Kuong, Fernando; Karolys, Alex; Endevco (International Foundation for Telemetering, 1997-10)
      This paper describes a Smart Sensor Network System for applications requiring sensors connected in a multidrop configuration in order to minimize interconnecting cables. The communication protocol was optimized for high speed data collection. The Smart Sensor Network System was developed with the following goals in mind: cost reduction, reliability and performance increase.
    • Automating Signal Conditioning Setup Through Integration with Sensor Information

      Tate, Jeffrey J.; Caterpillar Inc. (International Foundation for Telemetering, 1997-10)
      Caterpillar Inc. has been testing construction and mining equipment using Computerized Analysis Vans for two decades. During our latest van upgrade, we chose to move to PCM/FM from FM/FM mainly to increase the channel count. We also replaced our old signal conditioning that used span and balance potentiometers with computer programmable signal conditioning. This new signal conditioning requires that the gain and balance point be calculated for every channel on each test. The formulas for these calculations depend on the sensor, the signal conditioning card used, and the test requirements. Due to the number and variety of machines tested at the Caterpillar Proving Grounds, these calculations needed to be automated. Using a few initial parameters and the information from our sensor calibration database, each channel’s balance point, gain, and expected slope are calculated. This system has increased productivity, accuracy, and consistency over manually calculating these parameters. This paper covers the sensor database, the calculated parameters and an overview of the way the system works.

      Wigfall, Glenn D.; Bahia, Alberto A.; U.S. Army Armament, Research, Development and Engineering Center (International Foundation for Telemetering, 1997-10)
      The Army’s continuing effort to develop self-guided, anti-tank weapon systems has been fueled by successful development of an earlier generation of smart weapons. These self-guided systems, also labeled “brilliant weapons,” will present a natural progression to “smart” weapons development and testing. What has been critical to the success of these smart weapons development programs has been an end-to-end testability provided by on-board telemetry methods. The end-to-end test procedures can be efficiently performed in a static laboratory environment where space is available. On board the smart weapon, end-to-end testability is less feasible due to space and bandwidth limitations. The STAFF XM943 projectile development program makes use of a dual telemetry link to transmit an array of measurements which characterize the performance of the projectile in and end-to-end fashion. The dual telemetry systems provide analog measurement capability to evaluate system component-level functions and digital measurement capability to evaluate a system processor which lends itself to computer processing. The digital data is intrinsic to smart weapon systems since they typically employ embedded microprocessors for projectile system control. The STAFF XM943 electronic system is controlled by a TMS320C30 microprocessor. The dual telemetry system employs a traditional FM/FM technique for monitoring a number of analog functions and a “quasi-traditional” PCM/FM scheme for digital transmission. This paper discusses the implementation of this dual telemetry approach for the XM943 Projectile System.

      Reagan, J. A.; Schooley, L. C.; Ameri, K. Al; Hanson, P.; Newell, N.; Welker, J.; Yu, K; Zain, A.; University of Arizona (International Foundation for Telemetering, 1997-10)
      This student paper was produced as part of the team design competition in the University of Arizona course ECE 485, Radiowaves and Telemetry. It describes the design of a telemetering system for race cars. Auto Racing is an exciting sport where the winners are the ones able to optimize the balance between the driver’s skill and the racing teams technology. One of the main reasons for this excitement is that the main component, the race car, is traveling at extremely high speeds and constantly making quick maneuvers. To be able to do this continually, the car itself must be constantly monitored and possibly adjusted to insure proper maintenance and prevent damage. To allow for better monitoring of the car’s performance by the pit crew and other team members, a telemetering system has been designed, which facilitates the constant monitoring and evaluation of various aspects of the car. This telemetering system will provide a way for the speed, engine RPM, engine and engine compartment temperature, oil pressure, tire pressure, fuel level, and tire wear of the car to be measured, transmitted back to the pit, and presented in a way which it can be evaluated and utilized to increase the car’s performance and better its chances of winning the race. Furthermore, this system allows for the storing of the data for later reference and analysis.

      Heminger, Larry J.; SBS Technologies, Inc. (International Foundation for Telemetering, 1997-10)
      There is a wave of change coming. It started in the industrial automation community and it is slowly and surely working its way into aerospace, satellite and telemetry applications. It’s called the PC, and its not just for simple quick-look data anymore. Using state-of-the-art commercial hardware and software technologies, PC-based architectures can now be used to perform self contained, reliable and high performance telemetry data acquisition and processing functions – previously the domain of expensive, dedicated front end systems. This paper will discuss many of the key enabling technologies and will provide examples of their use in a truly next generation system architecture based on the Microsoft® Windows NT Operating System and related features.

      Busch, Charles; Lancaster, Phil; Payne, Edward; Scientific-Atlanta, Inc. (International Foundation for Telemetering, 1997-10)
      In light of recent technology advances, reliable Remote Sensing Satellite data reception (from satellites such as SPOT, ERS, Landsat, Radarsat, JERS, and IRS) is becoming increasingly more practical using smaller aperture antenna systems. Performance, which up to a decade ago was reserved for antenna aperture sizes in excess of 9 metres, is now being realised with antenna systems that are half the size. In addition, there is an increasing demand for tactical mobile systems that can be moved from one location in the world to another, and which can be operational in that new location in a very short period of time. This paper describes a mobile 4.3 metre X-Band program-track Remote Sensing trailer mounted receive system that Scientific-Atlanta has manufactured to perform evaluation tests on its data reception capability from the Radarsat, SPOT and ERS satellites, in particular. A general overview of the system will be given, which will describe: a) the antenna and program track feed configuration; b) the X/Y pedestal; c) the trailer and pedestal erection mechanism; d) the receive electronics; e) antenna control unit and f) the station control computer which is used for updating ephemeris data and for system management. A description will be given of how the system is prepared for operation following transport, via C-130 cargo airplane or road, to a particular location, concentrating on the ease of set-up and the time required for deployment. It will also describe how the system is readied for transport following the mission. Finally, results of a series of trials that were undertaken in Canada will be presented. The trials concentrated on validating the projected deployment times and verifying the reception of data from Radarsat, ERS and SPOT at various elevation angles in varying weather conditions. One of the main features investigated was the performance of the system at the 67 degree elevation point in the Radarsat orbit, where some people believe there may be a drop-off in the EIRP. The trials were conducted over a period of 7 months, covering the fall, winter and spring.

      Harris, Carol; Mascari, Michele; Rice, Kevin; Smith, Jeff; Steedman, John (International Foundation for Telemetering, 1997-10)
      The Asynchronous Transfer Mode (ATM) Conversion Device (ACD) System is based on state-of-the-art ATM technology. The system interfaces between high-rate ECL/RS-422 raw data bitstreams and Synchronous Optical Network (SONET) OC-3 fiber. The SONET OC-3 interface uses ATM Adaptation Layer Type Five (AAL5) format. The system exceeds its 50 Mbps raw data, single stream requirement and provides single stream raw data throughput at rates up to 75 Mbps. With ATM and SONET packaging overhead, this translates into 90 Mbps on the OC-3 fiber. In addition to high-rate throughput, the system provides multiplexing and demultiplexing of multiple stream throughput based on the ATM cell header Virtual Path and Virtual Channel Identifier (VPI/VCI) values. The system is designed with the flexibility to provide between three and six throughput channels. All of which are multiplexed/demultiplexed to and from the same OC-3 interface. Multiple stream cumulative raw data throughput rates of up to 80 Mbps, or 96 Mbps on the fiber, have successfully run.