• EMBEDDED GIS IN INTELLIGENT NAVIGATION SYSTEM

      Xiaobo, Xie; Qishan, Zhang; Xingjian, Huang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      Embedded GIS in Intelligent Navigation System is a special information system. This paper puts forward several basic principles and constraints during design for Embedded GIS at first, and then analyzes the feature of embedded platform and the function of Intelligent Navigation System, and presents a realization scheme of Embedded GIS.
    • MAGNETIC TAPE CARE & RESTORATION

      Wheeler, Jim; Tape Restoration & Forensic Services (International Foundation for Telemetering, 2002-10)
      For the past thirty years, many people around the world have been engaged in studies to determine how long tape will last. We have learned how to extend the life of tapes but no one has come up with a method for predicting the life of a tape. This paper will summarize the present-day recommended practices for tape care and storage and will also describe the most common tape problems and how to overcome them. The most common problem with playing an old tape is finding a machine to play it. Machine obsolescence is probably a bigger problem than tape degradation.
    • DEVELOPMENT OF A BASELINE TELEMETRY SYSTEM FOR THE CUBESAT PROGRAM AT THE UNIVERSITY OF ARIZONA

      Fink, U.; Schooley, L. C.; Hudor, A.; Eatchel, A. L.; Fevig, R.; Cooper, C.; Gruenenfelder, J.; Wallace, J.; University of Arizona (International Foundation for Telemetering, 2002-10)
      A telemetry system has been developed at the University of Arizona to serve as a baseline for future CubeSat designs. Two satellites are scheduled for launch in November of 2002. One features a beacon that operates autonomously of all but the power system and can independently deploy the antennas. The other will test the performance of new semiconductor devices in low earth orbit. Sensors will monitor voltages, currents (from which attitude and tumble rate can be derived), received signal strength and a distribution of temperatures. The CubeSat’s architecture, operating system, sensors, telemetry format and link budget are discussed.
    • THE IMPACT OF NETWORKS ON THE RF LINK

      Brierley, Scott; Boeing Company (International Foundation for Telemetering, 2002-10)
      Using a network-based telemetry system places additional requirements on the Radio Frequency (RF) link. Limitations imposed by this link must be considered in advance when designing a network-based telemetry system.
    • CHOOSING NETWORK STANDARDS

      Jones, Sid; Naval Air Systems Team (International Foundation for Telemetering, 2002-10)
      There are many network standards in the commercial market today. The layered concept works so well, a developer can implement exactly the capability they desire through careful selection of standards and protocols. This brings up an interesting question of where we draw the line between standardizing on a single implementation and allowing the flexibility of all there is to offer? There are valid arguments for both sides. The telemetry community cannot afford to let this question fall through the cracks. We have the chance to identify what we need to do and how we should do it for both the specific application and the overall system.
    • TIME, SPACE, POSITION INFORMATION UNIT MESSAGE STRUCTURE OVERVIEW

      Meyer, Steven J.; Naval Air Warfare Center Weapons Division (International Foundation for Telemetering, 2002-10)
      The Joint Advanced Missile Instrumentation (JAMI) program is developing a Time, Space, and Position Information (TSPI) unit for high dynamic missile platforms by employing the use of Global Position System (GPS) and inertial sensors. The GPS data is uncoupled from the inertial data. The output of the JAMI TSPI unit follows the packet telemetry protocol and is called the TSPI unit message structure (TUMS). The packet format allows the data stream to stand on its own, be integrated into a packet telemetry system or be an asynchronous data channel in a PCM data stream. On the ground, the JAMI data processor (JDP) Kalman filters the GPS and inertial data to provide a real time TSPI solution to the ranges for display. This paper gives an overview of the message format, the timing relationships between the GPS data and inertial data, and how TUMS is to be handled by the telemetry receiving site to hand it off to the JDP.
    • ADVANCED RANGE TELEMETRY (ARTM) TIER I COMPATIBLE DEMODULATOR TESTING AND RESULTS

      Temple, Kip; Air Force Flight Test Center (International Foundation for Telemetering, 2002-10)
      The Nova HYPERMOD demodulator operates in three modes, the classic pulse-code modulation/frequency modulation (PCM/FM), sometimes known as continuous phase frequency shift keying (CPFSK) mode, shaped offset quadrature phase shift keying (SOQPSK) mode, and continuous phase modulation (CPM) mode. Of interest to this paper is SOQPSK mode which is a waveform similar to the Advanced Range Telemetry (ARTM) Tier I waveform, Feher’s Quadrature Phase Shift Keying, B version (FQPSK-B) revision (Rev) A1. Also considered is another variant, FQPSK-JR. This paper will outline the cross compatibility and resynchronization speed of these waveforms based upon ARTM-adopted demodulator performance tests. The results of these laboratory tests comparing the HYPERMOD demodulator, the enhanced Tier I demodulator, and the current Tier I reference demodulator, both from RF Networks, will be presented.
    • SPACE COMMUNICATION DEMONSTRATION USING INTERNET TECHNOLOGY

      Israel, Dave; Parise, Ron; Hogie, Keith; Criscuolo, Ed; National Aeronautics and Space Administration; Computer Sciences Corp (International Foundation for Telemetering, 2002-10)
      This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of Internet communication technologies to space communication. The goal is to provide global addressability and standard network protocols and applications for future space missions. It describes the communication architecture and operations concepts that will be deployed and tested on a Space Shuttle flight in July 2002. This is a NASA Hitchhiker mission called Communication and Navigation Demonstration On Shuttle (CANDOS). The mission will be using a small programmable transceiver mounted in the Shuttle bay that can communicate through NASA’s ground tracking stations as well as NASA’s space relay satellite system. The transceiver includes a processor running the Linux operating system and a standard synchronous serial interface that supports the High-level Data Link Control (HDLC) framing protocol. One of the main goals will be to test the operation of the Mobile IP protocol (RFC 2002) for automatic routing of data as the Shuttle passes from one contact to another. Other protocols to be utilized onboard CANDOS include secure login (SSH), UDP-based reliable file transfer (MDP), and blind commanding using UDP. The paper describes how each of these standard protocols available in the Linux operating system can be used to support communication with a space vehicle. It will discuss how each protocol is suited to support the range of special communication needs of space missions.
    • WHO MOVED MY TAPE RECORDER FLAVORED CHEESE

      Berard, Alfredo J.; Chalfant, Tim; Lloyd, Joe; Small, Marty; Buckley, Mark; Bagó, Balázs; Lockard, Michael; Eglin Air Force Base; Edwards Air Force Base; Navair; et al. (International Foundation for Telemetering, 2002-10)
      For the last 30 years Magnetic Tape Systems have been the primary means of recording data from airborne instrumentation systems. Increasing data rates and harsh environmental requirements have often exceeded the ability of tape-based systems to keep pace with platform technology. This paper examines operational and data reduction benefits when employing the IRIG 106 Chapter 10 Solid State Recorder Standard introduced by the Range Commanders Council (RCC) Telemetry Group (TG). The Standard and this paper address media formatting, data formatting for a variety of different data types, data downloading, and data security, along with serial command and control and discrete command and control of the recorder. This paper also addresses software data processing and raw data reconstruction of Chapter 10 data.
    • HARDWARE SYSTEM DESIGN FOR VEHICLE NAVIGATOR

      Li, Chen; Qi-shan, Zhang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      This paper introduces the essential points for designing a navigating system, and describes the modules of a typical vehicle navigator. This paper also gives a practical navigator example. Some experience for design is also mentioned.
    • THE VEHICLE MONITORING SYSTEM BASED ON GPRS

      Xu, Liu; Qishan, Zhang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      The Vehicle Monitoring System based on GPRS is a system using GPRS network to transmit data, including location data, time data and so on .It has many advantages compared with those systems based on other communication modes. The key of the system lies in how to build up the connection with exterior data network. In this paper, the constitution of the system is introduced, and the course of building up connection with exterior data network is described in detail.
    • INTERNET TECHNOLOGY FOR FUTURE SPACE MISSIONS

      Rash, James; Hogie, Keith; Casasanta, Ralph; NASA; Computer Sciences Corporation (International Foundation for Telemetering, 2002-10)
      Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.
    • IN-SERVICE DETECTION OF MULTIPATH FADING

      Jefferis, Robert; TYBRIN Corporation (International Foundation for Telemetering, 2002-10)
      Multipath (MP) fading is the dominant channel impairment in many aeronautical telemetry links. One product of a recent multipath mitigation study is the discovery of a simple technique for detecting its presence over a useful range of conditions. The technique also detects significant random noise levels in the channel. This paper describes the “Signal Degradation Indicator” (SDI) and its application to FQPSK-B and SOQPSK [2] modulation. Laboratory emulation data is presented and implementation considerations are discussed.
    • TRANSMIT DIVERSITY SCHEME FOR DUAL-ANTENNA AERONAUTICAL TELEMETRY SYSTEMS

      Crummett, Ronald C.; Jensen, Michael A.; Rice, Michael D.; Brigham Young University (International Foundation for Telemetering, 2002-10)
      The use of two antennas on an aeronautical telemetry transmitter is a common practice for overcoming signal obstruction that can occur during air vehicle maneuvering. However, this practice also leads to interference nulls that can cause dramatic degradation in the average signal integrity. This paper discusses the application of a transmit diversity scheme capable of overcoming this interference problem. The development leads to symbol error probability expressions that can be applied to assess the performance of the scheme relative to that of traditional schemes. Representative computational examples demonstrate the potential of the method.
    • TELEMETRY GROUND STATION OPEN SOURCE DEVELOPMENT

      James, William G., Jr.; Eglin Air Force Base (International Foundation for Telemetering, 2002-10)
      The Central Control Facility at Eglin Air Force Base has acquired full intellectual rights to a single board telemetry card with device driver and test software. This card has an integrated IRIG 106 PCM decommutator, IRIG time clock and minimal PCM simulator capability using the latest in Field Programmable Gate Array technology. Eglin will offer this capability to the telemetry community as both open source hardware and software and solicit partnerships with both government and private industry for both open source and closed source for-profit products.
    • CHAOTIC SPREAD-SPECTRUM SEQUENCE GENERATED BY MULTILEVEL QUANTIFYING AND THEIR PROPERTIES

      Chengquan, Au; Tingxian, Zhou; Harbin Institute of Technology (International Foundation for Telemetering, 2002-10)
      According to the advantages of chaotic analog sequences and chaotic binary sequences, this paper proposes a method generating chaotic binary spread-spectrum sequence by multilevel quantifying. This paper proved that even correlation and odd correlation between such sequences of length N are all Gaussian distributed with mean 0 and variance N, the even of mean-square cross-correlation is N, and the variance of mean-square cross-correlation is 2N. The method can increase the number of chaotic sequences, made the spread-spectrum system more secure. The theoretical analyses and the results of simulation show that the performance of such sequence general is as same as traditional spread-spectrum sequence, its number is very large, and can be used in CDMA in future.
    • SOFTWARE RADIO TECHNOLOGY AND CHALLENGES

      Chapin, John; Shah, Alok; Vanu, Inc. (International Foundation for Telemetering, 2002-10)
      This paper provides an overview of software radio and its current state in the industry. Software radio is a technology in which all of the waveform processing, including the physical layer, of a wireless device moves into software. If designed properly, this approach leads to dramatically improved device flexibility, software portability, and reduced development costs. Of course, such a technology brings with it numerous challenges, from hardware components to power constraints to the regulatory environment.
    • NETWORKABLE TELEMETRY DATA RECORDERS BASED ON COTS COMPUTER TECHNOLOGY

      Smith, Grant M.; Dewetron Inc. (International Foundation for Telemetering, 2002-10)
      Advances in several related technologies have brought together the previously incompatible goals of incorporating as much COTS technology as possible into the telemetry data recording architecture, providing operators with the kinds of real-time graphical data displays that they are accustomed to, and allowing these same data display systems to share data across a network and write to common database files accessible from centralized workstations.
    • FQPSK-B Baseband Filter Alternatives

      Jefferis, Robert; TYBRIN Corporation (International Foundation for Telemetering, 2002-10)
      Designers of small airborne FQPSK-B (-B) transmitters face at least two significant challenges. First, many U.S. Department of Defense (DOD) test applications require that transmitters accommodate a continuum of data rates from 1, to at least 20 Mb/s in one design. Another challenge stems from the need to package a high-speed digital baseband signal generator in very close proximity to radio frequency (RF) circuitry required for 1.4 to 2.4 GHz operation. The -B baseband filter options prescribed by Digcom/Feher [2] are a major contributor to variable data rate design challenges. This paper summarizes a study of -B filter alternatives and introduces FQPSK-JR (JR), an alternative to -B that can simplify digital baseband transmitter designs. Very short impulse response digital filters are used to produce essentially the same spectral efficiency and nonlinear amplifier (NLA) compatibility as -B while preserving or improving detection efficiency (DE). In addition, a strategy for eliminating baseband shaping filters is briefly discussed. New signaling wavelets and, modified wavelet versus symbol sequence mapping rules associated with them, can be captured from a wide range of alternative filter designs.
    • ENHANCING THE TELEMETRY ATTRIBUTES TRANSFER STANDARD (TMATS) TO INCLUDE INSTRUMENTATION DATA AND NEW DATA CONVERSION FORMATS

      Lockard, Michael; Ziegler, Brian; Conway, Brian; EMC^2 Corporation (International Foundation for Telemetering, 2002-10)
      As stated in IRIG 106-93/96/99/00, the purpose of the Telemetry Attributes Transfer Standard (TMATS) is; “... provides a common format for the transfer of information between the user and a test range or between ranges. This format will minimize the 'station unique' activities that are necessary to support any test item. In addition, it is intended to relieve the labor intensive process currently required to reformat the information by providing the information on computer compatible media, thus reducing errors and requiring less preparation time for test support.” However, it is well known that TMATS does not support “Instrumentation” data. Also, TMATS does not include many current data conversion formats, or have a way to easily include new formats as they are adopted. We believe that such changes will help TMATS reach its full potential and become more closely aligned with its stated objectives. It is the hope of the authors that this paper will generate support for IRIG to revise TMATS to include these important amendments.