• CHOOSING NETWORK STANDARDS

      Jones, Sid; Naval Air Systems Team (International Foundation for Telemetering, 2002-10)
      There are many network standards in the commercial market today. The layered concept works so well, a developer can implement exactly the capability they desire through careful selection of standards and protocols. This brings up an interesting question of where we draw the line between standardizing on a single implementation and allowing the flexibility of all there is to offer? There are valid arguments for both sides. The telemetry community cannot afford to let this question fall through the cracks. We have the chance to identify what we need to do and how we should do it for both the specific application and the overall system.
    • TELEMETRY GROUND STATION OPEN SOURCE DEVELOPMENT

      James, William G., Jr.; Eglin Air Force Base (International Foundation for Telemetering, 2002-10)
      The Central Control Facility at Eglin Air Force Base has acquired full intellectual rights to a single board telemetry card with device driver and test software. This card has an integrated IRIG 106 PCM decommutator, IRIG time clock and minimal PCM simulator capability using the latest in Field Programmable Gate Array technology. Eglin will offer this capability to the telemetry community as both open source hardware and software and solicit partnerships with both government and private industry for both open source and closed source for-profit products.
    • PHASE CENTER PROBLEMS WITH WRAP-AROUND ANTENNAS

      Meyer, Steven J.; Kujiraoka, Scott R.; Naval Air Warfare Center Weapons Division (International Foundation for Telemetering, 2002-10)
      The Joint Advanced Missile Instrumentation (JAMI) program is integrating Global Positioning System (GPS) technology into missile telemetry systems. The weakest link appears to be the GPS antenna. The antenna on a missile is required to be flush mounted for aerodynamic reasons. Due to the missile’s tendency to roll, the antenna needs to be a multi-element omnidirectional antenna array. Therefore an antenna used on missiles is a wrap-around antenna since it will meet the flush mount and rolling requirements by giving omnidirectional coverage. JAMI has used readily available techniques for designing wrap-around telemetry antennas to develop a GPS wrap-around antenna and has discovered a major problem. The Phase Center of a wrap-around antenna tends to be a surface, not a point, and not necessarily at the centerline of the missile body. GPS measurements have been conducted to determine the Phase Center of the antenna. When the Phase Center is large, the GPS receiver perceives it as multipath and integer ambiguities cannot be resolved. This paper addresses the problems that have been uncovered and outlines the steps that are planned to resolve them.
    • 3-D Ray-Tracing Simulations for 5.7GHz RF Indoor Position Location System

      Kosbar, Kurt; Annamraju, Venu; Burns, Thomas; University of Missouri-Rolla (International Foundation for Telemetering, 2002-10)
      The objective of the project is to continuously track a handheld device in an office, with centimeter accuracy in the three dimensions. A 3-D ray-tracing algorithm has been developed to simulate the impulse response of the indoor channel. The algorithm can evaluate the impulse response at multiple receiver locations. Non-linear optimization has been used to eliminate the need for multiple runs of simulation. The optimization program also significantly reduces the number of rays launched. The algorithm incorporates bandwidth effects on multipath resolution of the system.
    • CAPS: AN EGLIN RANGE STANDARD FOR PC-BASED TELEMETRY DATA REDUCTION

      Thomas, Tim; TYBRIN Corporation; Eglin Air Force Base (International Foundation for Telemetering, 2002-10)
      A need exists to provide a flexible data reduction tool that minimizes software development costs and reduces analysis time for telemetry data. The Common Airborne Processing System (CAPS), developed by the Freeman Computer Sciences Center at Eglin AFB, Florida, provides a generalpurpose data reduction capability for digitally recorded data on a PC. Data from virtually any kind of MIL-STD-1553 message or Pulse Code Modulation (PCM) frame can be extracted and converted to engineering units using a parameter dictionary that describes the data format. The extracted data can then be written to a file, ASCII or binary, with a great deal of flexibility in the output format. CAPS has become the standard for digitally recorded data reduction on a PC at Eglin. New features, such as composing derived parameters using mathematical expressions, are being added to CAPS to make it an even more productive data reduction tool. This paper provides a conceptual overview of the CAPS version 2.3 software.
    • A STATUS REPORT OF THE JOINT ADVANCED MISSILE INSTRUMENTATION PROJECT HIGH DYNAMIC GPS- WE FINALLY GOT IT

      Powell, Dave; Scofield, Don; Naval Air Warfare Center Weapons Division (International Foundation for Telemetering, 2002-10)
      Joint Advanced Missile Instrumentation (JAMI), a Central Test and Evaluation Investment Program (CTEIP) initiative, is developing advanced telemetry system components that can be used in an integrated instrumentation package for tri-service small missile test and training applications. JAMI demonstrated significant improvement in the performance of low-cost Global Positioning System (GPS) based Time-Space-Position Information (TSPI) tracking hardware that can be used for world-wide test and training. Acquisition times of less than 3 seconds from a cold start and tracking dynamics to over 60 Gs were demonstrated. The design of a programmable Flight Termination Safe and Arm device has been completed. This paper discusses the progress of the program during the past year and the efforts planned for fiscal year 2002. High dynamic testing results of GPS and Inertial measurement Unit (IMU) devices and problems encountered are discussed.
    • AUTOMATIC DEPENDENT SURVEILLANCE (ADS) SYSTEM RESEARCH AND DEVELOPMENT

      Boying, Lu; Jun, Zhang; Shuhui, Nie; Xinjian, Huang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      This paper presents the basic concept, construction principle and implementation work for the Automatic Dependent Surveillance (ADS) system. As a part of ADS system, the ADS message processing system based on PC computer was given more attention. Furthermore, the paper introduces the ADS trial status and points out that the ADS implementation will bring tremendous economical and social efficiency.
    • LOW-COST TELEMETRY USING FREQUENCY HOPPING AND THE TRF6900™ TRANSCEIVER1

      Thornér, Carl-Einar I.; Iltis, Ronald A.; University of California, Santa Barbara (International Foundation for Telemetering, 2002-10)
      The ISM bands have opened up new opportunities for telemetry using spread-spectrum communications. A low-cost frequency-hopping radio is described here for the 900 MHz ISM band that can be programmed with a wide range of hop and data rates. The ‘C6201 DSP from TI is used to control the frequency and data rate of the TI TRF6900 transceiver chip using a custom interface of the 6201 EVM board to the serial I/O on the 6900 evaluation board.
    • USING MDP FOR TELEMETRY DATA TRANSFERS

      Chakraborti, Anirban; New Mexico State University (International Foundation for Telemetering, 2002-10)
      The current challenge has been to develop and adapt commercial Internet protocols for usage in space communications. Commercialized solutions, rather than Customized ones are cheaper, have low turnaround time and offer higher flexibility in deployment and operation. The focus of the study was to modify and develop UDP/IP based protocols commonly used in commercial Internet for reliable data transfers in space environment. Multicast Dissemination Protocol was designed by Naval Research Laboratory to provide reliable multicast data and file transfer delivery on the top of general UDP/IP platform. It is very suited for bulk data transfer over the Internet. We have extended its usage in space channels and evaluated it as a solution to meet key challenges in space communications like high bit error rates and asymmetric channels. We have also tried to optimize the performance of the protocol in the terms of throughput, reliability, integrity and security of data. The evaluation test were carried on our Space to Ground Link Simulator which uses PPP to model point to point satellite links and correspond to low capacity systems as found in small satellite systems.
    • RECORDERS IN NETWORKED DATA ACQUISITION SYSTEMS

      Grebe, David L.; Apogee Labs Inc. (International Foundation for Telemetering, 2002-10)
      The role of recorders in telemetry applications has undergone many changes throughout the years. We’ve seen the evolution from multi-track tape to disk to solid state technologies, both for airborne and ground based equipment. Data acquisition and collection system design has changed as well and a recent trend in airborne is to merge acquisition and recording. On the ground, increased decentralization of data collection and processing has generated the requirement to provide backup storage to protect against communication circuit outages. This paper explores the trend to adopt network based data acquisition, collection, and distribution systems for telemetry applications and the impact on recording techniques and equipment. It shows that in this emerging approach the recorder returns to its root mission of attempting to provide the fastest, largest capacity for the least amount of investment. In a network based architecture the recorder need only accept and reproduce data operating independently from the acquisition process.
    • An IF Sampling Digital Receiver Implementation for Space-based Command and Telemetry Applications

      Maples, Bruce W.; Fix, Keith A.; CMC Electronics Cincinnati (International Foundation for Telemetering, 2002-10)
      This paper describes an approach to the implementation of an IF sampling digital receiver for low data rate command and telemetry applications in the NASA Goddard Spaceflight Tracking and Data Network (STDN) and Air Force Space-Ground Link System (SGLS). The digital design is targeted for an FPGA-based implementation and was written entirely in VHDL. Several size and clock reduction techniques are described which were utilized due to limited gate-array resources and power. The system-level design architecture is described followed by a discussion of algorithms and performance of critical stages in the receiver chain. Bit error performance of the prototype receiver is also presented. Finally, although this design is specifically targeted for a narrowband command and telemetry application, the methodology forms the basis of a configurable receiver for higher data rate applications.
    • THE IMPACT OF NETWORKS ON THE RF LINK

      Brierley, Scott; Boeing Company (International Foundation for Telemetering, 2002-10)
      Using a network-based telemetry system places additional requirements on the Radio Frequency (RF) link. Limitations imposed by this link must be considered in advance when designing a network-based telemetry system.
    • PLASMA TELEMETRY IN HYPERSONIC FLIGHT

      Starkey, Ryan P.; Lewis, Mark J.; Jones, Charles H.; University of Maryland; Edwards Air Force Base (International Foundation for Telemetering, 2002-10)
      Problems associated with telemetry blackout caused by the plasma sheath surrounding a hypersonic vehicle are addressed. In particular, the critical nature of overcoming this limitation for test and evaluation purposes is detailed. Since the telemetry blackout causes great concern for atmospheric cruise vehicles, ballistic missiles, and reentry vehicles, there have been many proposed approaches to solving the problem. This paper overviews aerodynamic design methodologies, for which the required technologies are only now being realized, which may allow for uninterrupted transmission through a plasma sheath. The severity of the signal attenuation is dependent on vehicle configuration, trajectory, flightpath, and mission.
    • ENCRYPTED BIT ERROR RATE TESTING

      Guadiana, Juan M.; Macias, Fil; Naval Surface Warfare Center; White Sands Missile Range (International Foundation for Telemetering, 2002-10)
      End-to-End testing is a tool for verifying that Range Telemetry (TM) System Equipment will deliver satisfactory performance throughout a planned flight test. A thorough test verifies system thresholds while gauging projected mission loading all in the presence of expected interference. At the White Sands Missile Range (WSMR) in New Mexico, system tests are routinely conducted by Range telemetry Engineers and technicians in the interest of ensuring highly reliable telemetry acquisition. Even so, flight or integration tests are occasionally halted, unable to complete these telemetry checks. The Navy Standard Missile Program Office and the White Sands Missile Range, have proactively conducted investigations to identify and eliminate problems. A background discussion is provided on the serious problems with the launcher acquisition, which were resolved along the way laying the ground work for effective system testing. Since there were no provisions to test with the decryption equipment an assumption must be made. Encryption is operationally transparent and reliable. Encryption has wide application, and for that reason the above assumption must be made with confidence. A comprehensive mission day encrypted systems test is proposed. Those involved with encrypted telemetry systems, and those experiencing seemingly unexplainable data degradations and other problems with or without encryption should review this information.
    • Hardware Description for the Advanced Subminiature Telemetry System

      Sadowski, Eric M.; Schmidt, Robert; Cleveland Medical Devices Inc. (International Foundation for Telemetering, 2002-10)
      The Advanced Subminiature Telemetry System (ASMT) contract was awarded several years ago and the basic framework for the overall system has been described in earlier papers. This paper discusses an overview of the design of the hardware pieces to create the ASMT system.
    • FQPSK-B Baseband Filter Alternatives

      Jefferis, Robert; TYBRIN Corporation (International Foundation for Telemetering, 2002-10)
      Designers of small airborne FQPSK-B (-B) transmitters face at least two significant challenges. First, many U.S. Department of Defense (DOD) test applications require that transmitters accommodate a continuum of data rates from 1, to at least 20 Mb/s in one design. Another challenge stems from the need to package a high-speed digital baseband signal generator in very close proximity to radio frequency (RF) circuitry required for 1.4 to 2.4 GHz operation. The -B baseband filter options prescribed by Digcom/Feher [2] are a major contributor to variable data rate design challenges. This paper summarizes a study of -B filter alternatives and introduces FQPSK-JR (JR), an alternative to -B that can simplify digital baseband transmitter designs. Very short impulse response digital filters are used to produce essentially the same spectral efficiency and nonlinear amplifier (NLA) compatibility as -B while preserving or improving detection efficiency (DE). In addition, a strategy for eliminating baseband shaping filters is briefly discussed. New signaling wavelets and, modified wavelet versus symbol sequence mapping rules associated with them, can be captured from a wide range of alternative filter designs.
    • LOW BUDGET APPROACH TO ACCURATE TIME TAGGING OF SATELLITE DATA

      Fike, Brian O’dell; Weiss, Michael A.; Ball Aerospace & Technologies Corp. (International Foundation for Telemetering, 2002-10)
      The GEOSAT Follow-On (GFO) Time Tag Correlation System (TTCS) was implemented as a ground-based time correlation system for precision time tagging of satellite data. This system uses simple ground hardware and software to convert satellite time to UTC, resulting in time tagging of payload data to within +/- 20 microseconds. The technique described in this paper eliminates the need for an on-board satellite Ultra-Stable Oscillator (USO) to achieve precision time tagging of satellite data and, therefore, can result in a significant cost savings to future missions.
    • A PARALLEL -SEQUENTIAL SEARCH ALGORITHM IN A HIGH DYNAMIC GPS RECEIVER

      Xingyu, Luo; Qishan, Zhang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      It is need to design acquisition and tracking for code loop and carrier loop to detect the high dynamic Global Position System (GPS) signal. Acquiring signal quickly and shortening acquisition time in the cold case are key technology of a high dynamic GPS receiver. Moreover, fast acquisition of C/A code is the base of code tracking and carrier acquisition and tracking. This paper describes elements and implementation of a new parallel-sequential search Algorithm to acquire C/A code of the high dynamic GPS signal. And combined with a 12-channel correlator named GP2021 produced by GEC Co., the arithmetic implementation to acquire C/A code of the high dynamic GPS signal used sequential search based on DSP technology is also given.
    • WHO MOVED MY TAPE RECORDER FLAVORED CHEESE

      Berard, Alfredo J.; Chalfant, Tim; Lloyd, Joe; Small, Marty; Buckley, Mark; Bagó, Balázs; Lockard, Michael; Eglin Air Force Base; Edwards Air Force Base; Navair; Calculex Corporation; JDA Associates; Heim Systems; EMC Corporation (International Foundation for Telemetering, 2002-10)
      For the last 30 years Magnetic Tape Systems have been the primary means of recording data from airborne instrumentation systems. Increasing data rates and harsh environmental requirements have often exceeded the ability of tape-based systems to keep pace with platform technology. This paper examines operational and data reduction benefits when employing the IRIG 106 Chapter 10 Solid State Recorder Standard introduced by the Range Commanders Council (RCC) Telemetry Group (TG). The Standard and this paper address media formatting, data formatting for a variety of different data types, data downloading, and data security, along with serial command and control and discrete command and control of the recorder. This paper also addresses software data processing and raw data reconstruction of Chapter 10 data.
    • EMBEDDED GIS IN INTELLIGENT NAVIGATION SYSTEM

      Xiaobo, Xie; Qishan, Zhang; Xingjian, Huang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      Embedded GIS in Intelligent Navigation System is a special information system. This paper puts forward several basic principles and constraints during design for Embedded GIS at first, and then analyzes the feature of embedded platform and the function of Intelligent Navigation System, and presents a realization scheme of Embedded GIS.