• International Telemetering Conference Proceedings, Volume 38 (2002)

      International Foundation for Telemetering, 2002-10
    • FLIGHT TERMINATION COMMAND AUTHENTICATION USING BLOCK ENCRYPTION

      Arce, Dennis; Bourne Technologies, Inc. (International Foundation for Telemetering, 2002-10)
      Next generation flight termination systems (FTSs) will use digital technologies to verify the authenticity of range safety commands by command receiver-decoders located on each vehicle. This paper will discuss the general principles behind simplex message authentication using a block encryption cipher, and presents examples for demonstration.
    • PERFORMANCE STUDY OF ENHANCED FQPSK AND CONSTRAINED ENVELOPE MODULATION TECHNIQUES

      Borah, Deva K.; Horan, Stephen; New Mexico State University (International Foundation for Telemetering, 2002-10)
      This paper investigates the spectral properties and the bit error rate (BER) performance of enhanced FQPSK (EFQPSK) and constrained envelope modulation (CEM) techniques. Both the techniques are found to provide good spectral efficiencies. The EFQPSK signals are found to generate spectral lines for unbalanced data. An analytical spectral study for the spectral lines is presented. While the performance of CEM techniques has been presented in [6] for an ideal nonlinear amplifier, we present results for more realistic amplifiers with AM/AM and AM/PM effects. It is shown that such an amplifier generates spectral regrowth and a predistorter is required to reduce the adverse effects. A BER performance study with/without channel coding is also presented for the two techniques.
    • A STATUS REPORT OF THE JOINT ADVANCED MISSILE INSTRUMENTATION PROJECT HIGH DYNAMIC GPS- WE FINALLY GOT IT

      Powell, Dave; Scofield, Don; Naval Air Warfare Center Weapons Division (International Foundation for Telemetering, 2002-10)
      Joint Advanced Missile Instrumentation (JAMI), a Central Test and Evaluation Investment Program (CTEIP) initiative, is developing advanced telemetry system components that can be used in an integrated instrumentation package for tri-service small missile test and training applications. JAMI demonstrated significant improvement in the performance of low-cost Global Positioning System (GPS) based Time-Space-Position Information (TSPI) tracking hardware that can be used for world-wide test and training. Acquisition times of less than 3 seconds from a cold start and tracking dynamics to over 60 Gs were demonstrated. The design of a programmable Flight Termination Safe and Arm device has been completed. This paper discusses the progress of the program during the past year and the efforts planned for fiscal year 2002. High dynamic testing results of GPS and Inertial measurement Unit (IMU) devices and problems encountered are discussed.
    • TELEMETRY GROUND STATION OPEN SOURCE DEVELOPMENT

      James, William G., Jr.; Eglin Air Force Base (International Foundation for Telemetering, 2002-10)
      The Central Control Facility at Eglin Air Force Base has acquired full intellectual rights to a single board telemetry card with device driver and test software. This card has an integrated IRIG 106 PCM decommutator, IRIG time clock and minimal PCM simulator capability using the latest in Field Programmable Gate Array technology. Eglin will offer this capability to the telemetry community as both open source hardware and software and solicit partnerships with both government and private industry for both open source and closed source for-profit products.
    • Hardware Description for the Advanced Subminiature Telemetry System

      Sadowski, Eric M.; Schmidt, Robert; Cleveland Medical Devices Inc. (International Foundation for Telemetering, 2002-10)
      The Advanced Subminiature Telemetry System (ASMT) contract was awarded several years ago and the basic framework for the overall system has been described in earlier papers. This paper discusses an overview of the design of the hardware pieces to create the ASMT system.
    • JAVA FOR REAL-TIME TELEMETRY SYSTEMS

      K/Bidy, Gilles; L-3 Communications (International Foundation for Telemetering, 2002-10)
      Because of an ever-increasing need for performance and high predictability in modern real-time telemetry systems, the Java programming language is typically not considered a viable option for embedded software development. Nevertheless, the Java platform provides many features that can easily be applied to embedded telemetry systems that other development platforms cannot match. But obviously, there are pitfalls to be aware of. This paper will present an alternative solution to address today’s problems in real-time telemetry systems and will cover the following topics: • Java development platforms for the embedded world • Impact on software portability and reusability • Performance and optimization techniques • Direct access to hardware devices • Memory management and garbage collection • Network-centric component-oriented architecture • Real-time examples from past experience • Future developments
    • ENHANCED FLIGHT TERMINATION SYSTEM PROGRAM - PART TWO

      McAndrews, Thomas J., III; TYBRIN Corporation (International Foundation for Telemetering, 2002-10)
      The Air Force Flight Test Center in association with the Range Commanders Council (RCC) Range Safety Group is conducting a program that will explore the next generation of ground-based flight termination technology, known as the Enhanced Flight Termination System (EFTS) program. The first part of the program was successfully concluded in May 2002. The Government is leading this program with support from contractors, academia, and other RCC groups including the Telemetry Group, Frequency Management Group, and Telecommunications and Timing Group. Additionally, the National Security Agency is providing key support along with vendors who design, build and test range safety systems. This paper will discuss details of the design validation and development phases (part two) of the EFTS program. Redesign of flight termination receivers and ground system modification plans will be discussed as well as flight and ground hardware testing objectives.
    • BANDWIDTH AND POWER EFFICIENCY TRADE-OFFS OF SOQPSK

      Geoghegan, Mark; Nova Engineering Inc. (International Foundation for Telemetering, 2002-10)
      Shaped Offset QPSK (SOQPSK), as proposed and analyzed by Terrance Hill, is a family of constant envelope waveforms that is non-proprietary and exhibits excellent spectral containment and detection efficiency. Results for two variants, defined as SOQPSK-A and -B, have previously been presented. However, it remains to be seen whether or not even more attractive choices exist. This paper explores the bandwidth and power efficiency trade-offs of the entire SOQPSK family using computer simulations and analytical performance bounds.
    • LOW BUDGET APPROACH TO ACCURATE TIME TAGGING OF SATELLITE DATA

      Fike, Brian O’dell; Weiss, Michael A.; Ball Aerospace & Technologies Corp. (International Foundation for Telemetering, 2002-10)
      The GEOSAT Follow-On (GFO) Time Tag Correlation System (TTCS) was implemented as a ground-based time correlation system for precision time tagging of satellite data. This system uses simple ground hardware and software to convert satellite time to UTC, resulting in time tagging of payload data to within +/- 20 microseconds. The technique described in this paper eliminates the need for an on-board satellite Ultra-Stable Oscillator (USO) to achieve precision time tagging of satellite data and, therefore, can result in a significant cost savings to future missions.
    • MOTION COMPENSATION FOR HIGH-RESOLUTION SYNTHETIC-APERTURE SONAR IMAGING

      Lee, Hua; University of California (International Foundation for Telemetering, 2002-10)
      This paper presents a motion estimation and correction technique for the realization of synthetic-aperture sonar imaging. It utilizes the redundancy provided by the multiple-element receiver array and physical-array sub-images are used for the estimate the motion errors between adjacent receiver positions in the form of phase errors. Subsequently, motion errors can be corrected accordingly by making adjustments to the wavefield data samples prior to the formation of synthetic-aperture images.
    • HARDWARE SYSTEM DESIGN FOR VEHICLE NAVIGATOR

      Li, Chen; Qi-shan, Zhang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      This paper introduces the essential points for designing a navigating system, and describes the modules of a typical vehicle navigator. This paper also gives a practical navigator example. Some experience for design is also mentioned.
    • THE VEHICLE MONITORING SYSTEM BASED ON GPRS

      Xu, Liu; Qishan, Zhang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      The Vehicle Monitoring System based on GPRS is a system using GPRS network to transmit data, including location data, time data and so on .It has many advantages compared with those systems based on other communication modes. The key of the system lies in how to build up the connection with exterior data network. In this paper, the constitution of the system is introduced, and the course of building up connection with exterior data network is described in detail.
    • WHO MOVED MY TAPE RECORDER FLAVORED CHEESE

      Berard, Alfredo J.; Chalfant, Tim; Lloyd, Joe; Small, Marty; Buckley, Mark; Bagó, Balázs; Lockard, Michael; Eglin Air Force Base; Edwards Air Force Base; Navair; et al. (International Foundation for Telemetering, 2002-10)
      For the last 30 years Magnetic Tape Systems have been the primary means of recording data from airborne instrumentation systems. Increasing data rates and harsh environmental requirements have often exceeded the ability of tape-based systems to keep pace with platform technology. This paper examines operational and data reduction benefits when employing the IRIG 106 Chapter 10 Solid State Recorder Standard introduced by the Range Commanders Council (RCC) Telemetry Group (TG). The Standard and this paper address media formatting, data formatting for a variety of different data types, data downloading, and data security, along with serial command and control and discrete command and control of the recorder. This paper also addresses software data processing and raw data reconstruction of Chapter 10 data.
    • MAGNETIC TAPE CARE & RESTORATION

      Wheeler, Jim; Tape Restoration & Forensic Services (International Foundation for Telemetering, 2002-10)
      For the past thirty years, many people around the world have been engaged in studies to determine how long tape will last. We have learned how to extend the life of tapes but no one has come up with a method for predicting the life of a tape. This paper will summarize the present-day recommended practices for tape care and storage and will also describe the most common tape problems and how to overcome them. The most common problem with playing an old tape is finding a machine to play it. Machine obsolescence is probably a bigger problem than tape degradation.
    • ADVANCED RANGE TELEMETRY (ARTM) TIER I COMPATIBLE DEMODULATOR TESTING AND RESULTS

      Temple, Kip; Air Force Flight Test Center (International Foundation for Telemetering, 2002-10)
      The Nova HYPERMOD demodulator operates in three modes, the classic pulse-code modulation/frequency modulation (PCM/FM), sometimes known as continuous phase frequency shift keying (CPFSK) mode, shaped offset quadrature phase shift keying (SOQPSK) mode, and continuous phase modulation (CPM) mode. Of interest to this paper is SOQPSK mode which is a waveform similar to the Advanced Range Telemetry (ARTM) Tier I waveform, Feher’s Quadrature Phase Shift Keying, B version (FQPSK-B) revision (Rev) A1. Also considered is another variant, FQPSK-JR. This paper will outline the cross compatibility and resynchronization speed of these waveforms based upon ARTM-adopted demodulator performance tests. The results of these laboratory tests comparing the HYPERMOD demodulator, the enhanced Tier I demodulator, and the current Tier I reference demodulator, both from RF Networks, will be presented.
    • ENCRYPTED BIT ERROR RATE TESTING

      Guadiana, Juan M.; Macias, Fil; Naval Surface Warfare Center; White Sands Missile Range (International Foundation for Telemetering, 2002-10)
      End-to-End testing is a tool for verifying that Range Telemetry (TM) System Equipment will deliver satisfactory performance throughout a planned flight test. A thorough test verifies system thresholds while gauging projected mission loading all in the presence of expected interference. At the White Sands Missile Range (WSMR) in New Mexico, system tests are routinely conducted by Range telemetry Engineers and technicians in the interest of ensuring highly reliable telemetry acquisition. Even so, flight or integration tests are occasionally halted, unable to complete these telemetry checks. The Navy Standard Missile Program Office and the White Sands Missile Range, have proactively conducted investigations to identify and eliminate problems. A background discussion is provided on the serious problems with the launcher acquisition, which were resolved along the way laying the ground work for effective system testing. Since there were no provisions to test with the decryption equipment an assumption must be made. Encryption is operationally transparent and reliable. Encryption has wide application, and for that reason the above assumption must be made with confidence. A comprehensive mission day encrypted systems test is proposed. Those involved with encrypted telemetry systems, and those experiencing seemingly unexplainable data degradations and other problems with or without encryption should review this information.
    • EQUIPMENT TIME-DELAY (ETD) MEASUREMENT TECHNOLOGY FOR CONTINUOUS WAVE TRANSPONDER

      Chengfang, Huang; Jianping, Hu; Southwest Institute of Electronics Technology (International Foundation for Telemetering, 2002-10)
      The Equipment Time-Delay (ETD) measurement technology for Continuous Wave (CW) transponder is discussed with emphasis on the principle of measuring the ETD of the intermediate frequency (IF) modulation transponder through measuring subcarrier modulation sideband tone phase. A general method for measuring ETD of different types of transponder (including IF-modulation transponder) is introduced. Finally the measurement method error is analyzed.
    • 3-D Ray-Tracing Simulations for 5.7GHz RF Indoor Position Location System

      Kosbar, Kurt; Annamraju, Venu; Burns, Thomas; University of Missouri-Rolla (International Foundation for Telemetering, 2002-10)
      The objective of the project is to continuously track a handheld device in an office, with centimeter accuracy in the three dimensions. A 3-D ray-tracing algorithm has been developed to simulate the impulse response of the indoor channel. The algorithm can evaluate the impulse response at multiple receiver locations. Non-linear optimization has been used to eliminate the need for multiple runs of simulation. The optimization program also significantly reduces the number of rays launched. The algorithm incorporates bandwidth effects on multipath resolution of the system.
    • Making All The Data Available Some Of The Time In Very Large Telemetry Volume Space Applications

      Cook, David B. (International Foundation for Telemetering, 2002-10)
      What do you do when your downlink telemetry needs outstrip your downlink bandwidth capability? The telemetry needed to support construction and operation of the largest, most complex engineering project ever undertaken, the International Space Station (ISS), already requires utilization of the full capacity of the downlink S-band capacity, yet there are additional systems and capabilities still to be added by NASA and the International Partners. The ISS Command and Telemetry Team has developed a method of swapping packets of telemetry that are intended for special operations, while simultaneously sending essential systems telemetry and less critical telemetry that is needed on a continuous basis. To support this attempt to “make available all of the data at least some of the time” the team developed concepts for grouping telemetry into families that would always be selected as a group and then created a set of metadata associated with these groups. This metadata is pre-defined to support automated selection and scrubbing of telemetry to correspond to major upgrades in the command and control software for the ISS. The new process will at least double the effective S-band downlink bandwidth. It will also provide automated selection, scrubbing, reporting and verification of telemetry selections.