• Making All The Data Available Some Of The Time In Very Large Telemetry Volume Space Applications

      Cook, David B. (International Foundation for Telemetering, 2002-10)
      What do you do when your downlink telemetry needs outstrip your downlink bandwidth capability? The telemetry needed to support construction and operation of the largest, most complex engineering project ever undertaken, the International Space Station (ISS), already requires utilization of the full capacity of the downlink S-band capacity, yet there are additional systems and capabilities still to be added by NASA and the International Partners. The ISS Command and Telemetry Team has developed a method of swapping packets of telemetry that are intended for special operations, while simultaneously sending essential systems telemetry and less critical telemetry that is needed on a continuous basis. To support this attempt to “make available all of the data at least some of the time” the team developed concepts for grouping telemetry into families that would always be selected as a group and then created a set of metadata associated with these groups. This metadata is pre-defined to support automated selection and scrubbing of telemetry to correspond to major upgrades in the command and control software for the ISS. The new process will at least double the effective S-band downlink bandwidth. It will also provide automated selection, scrubbing, reporting and verification of telemetry selections.

      Lee, Hua; University of California (International Foundation for Telemetering, 2002-10)
      This paper presents a motion estimation and correction technique for the realization of synthetic-aperture sonar imaging. It utilizes the redundancy provided by the multiple-element receiver array and physical-array sub-images are used for the estimate the motion errors between adjacent receiver positions in the form of phase errors. Subsequently, motion errors can be corrected accordingly by making adjustments to the wavefield data samples prior to the formation of synthetic-aperture images.
    • Network Telemetry: Practical Experiences and Unique Features

      D’Amico, William P.; Stadter, Patrick A.; Lauss, Mark H.; Hooper, Andrew; Johns Hopkins University; Materiel Test Center (International Foundation for Telemetering, 2002-10)
      The US Army’s Yuma Proving Ground (YPG) uses a wireless local area network (WLAN) to gather test data. It is desired to extend this WLAN to support tests of gun-launched munitions where miniature and rugged data acquisition hardware will be required. The Two Way Robust Acquisition of Data (2-RAD) program has been initiated under the Central Test and Evaluation Investment Program (CTEIP) to develop a process to expand the use of WLAN technology, which is now primarily used at YPG for internal ballistic test data acquisition.

      Smith, Grant M.; Dewetron Inc. (International Foundation for Telemetering, 2002-10)
      Advances in several related technologies have brought together the previously incompatible goals of incorporating as much COTS technology as possible into the telemetry data recording architecture, providing operators with the kinds of real-time graphical data displays that they are accustomed to, and allowing these same data display systems to share data across a network and write to common database files accessible from centralized workstations.

      Mauldin, Kendall; New Mexico State University (International Foundation for Telemetering, 2002-10)
      A multi-platform network design that is automated, bi-directional, capable of store and forward operations, and low-bandwidth has been developed to connect multiple satellite ground stations together in real-time. The LabVIEW programming language has been used to develop both the server and client aspects of this network. Future plans for this project include implementing a fully operational ground network using the described concepts, and using this network for real-time satellite operations. This paper describes the design requirements, RF and ground-based network configuration, software implementation, and operational testing of the ground network.

      Lin, Jin-Son; Feher, Kamilo; University of California (International Foundation for Telemetering, 2002-10)
      This paper presents noncoherent limiter-discriminator detection and differential detection of FQPSK (Feher quadrature phase-shift-keying) with maximum-likelihood sequence estimation (MLSE) techniques. Noncoherent FQPSK systems are suitable for fast fading and cochannel interference channels and channels with strong phase noise, and they can offer faster synchronization and reduce outage events compared with conventional coherent systems. In this paper, both differential detection and limiter-discriminator detection of FQPSK are discussed. We use MLSE with lookup tables to exploit the memory in noncoherently detected FQPSK signals and thus significantly improve the bit error rate (BER) performance in an additive white Gaussian noise (AWGN) channel.

      Kandadai, Srivatsan; New Mexico State University (International Foundation for Telemetering, 2002-10)
      We are interested in the problem of detecting and localizing objects in the compressed domain. The practical uses of this research are video surveillance, queries over digital library archives and teleconferencing. Most image operations, such as object recognition, are formulated as sequences of operations in the image domain. Such methods need direct access to pixel information as a starting point, but pixel information is not directly available in a compressed image stream. The standards that have emerged for still-image and video compression each contain steps that are commonly found in compression algorithms, like linear transformations, coefficient quantization, run-length coding and entropy coding. Coders like JPEG 2000 and SPHIT are built around the wavelet transform. Thus as a step toward detection and localization of objects embedded in the compressed bit stream we consider here the problem of localizing and detection in the wavelet domain.

      Rice, Michael; Perrins, Erik; Brigham Young University (International Foundation for Telemetering, 2002-10)
      The performance of multi-h CPM over multipath interference channels is evaluated with computer simulations using the optimal coherent receiver and a suboptimal noncoherent receiver. For channels with high-amplitude short-delay multipath reflections, the simulations show that both receivers reach an error floor in their performance as the amplitude of the multipath reflections grows. The rate of degradation for the noncoherent receiver is worse than for the coherent receiver. For channels with low-amplitude long-delay reflections the coherent and noncoherent receivers had losses of 1 dB and 3 dB respectively relative to their respective unfaded performance.

      Geoghegan, Mark; Nova Engineering Inc. (International Foundation for Telemetering, 2002-10)
      Shaped Offset QPSK (SOQPSK), as proposed and analyzed by Terrance Hill, is a family of constant envelope waveforms that is non-proprietary and exhibits excellent spectral containment and detection efficiency. Detection results using the filtering found in conventional OQPSK demodulators have been published for two variants of SOQPSK, namely SOQPSK-A and –B. This paper describes a method of synthesizing an optimal linear detection filter, with regard to bit error probability (BEP), and presents the resulting performance.

      Osgood, Karina; Burke, Larry; Webb, Amy; Muir, John; Dearstine, Christina; Quaglietta, Anthony; M/A-COM, Inc. (International Foundation for Telemetering, 2002-10)
      M/A-COM, Inc. has previously developed a highly integrated transmitter chip set for wireless telemetry applications for the military L and S band frequencies and the commercial 2.4GHz ISM band. The original chip set is comprised of a voltage controlled oscillator (VCO), a silicon phase locked loop (PLL), and a family of power amplifiers (PA's). Using these components, M/A-COM has produced a miniature IRIG-compliant transmitter module, which has been flight-tested by the U.S. Army’s Hardened Subminiature Telemetry and Sensor System (HSTSS) program. Since the initial offering, several product enhancements have been added. The module performance has been improved by tailoring the VCO specifically for direct frequency modulation applications. In addition to improving noise performance, these enhancements have produced improved modulation linearity, decreased lock time and increased carrier stability. Modulation rates in excess of 10Mbps have been demonstrated. High efficiency power amplifiers operating at 3V have also been added to the family of amplifiers (PAE > 50%). This greatly enhanced efficiency allows higher RF power output while maintaining the same miniature form factor for the transmitter. Further, M/A-COM has added a silicon-on-sapphire PLL to the chip set, which operates at frequencies up to 3.0GHz. This paper details the enhancements to the components within the chip set, and the improvement in performance of the transmitter module. Test data is presented for the transmitter modules and individual components.

      Law, Eugene; NAVAIR (International Foundation for Telemetering, 2002-10)
      This paper will present the results of some experiments with non-coherent, single symbol detection of pulse code modulation (PCM)/frequency modulation (FM) where the receiver intermediate frequency (IF) bandwidth is much wider than the bit rate. The experiments involved varying the peak deviation and measuring the bit error probability (BEP) at various signal energy per bit to noise power spectral density ratios (E(b)/N(o)). The experiments showed that the optimum peak-to-peak deviation was about 0.7 to 0.8 times the –3 dB IF bandwidth and that the E(b)/N(o) required for a given BEP increased as the ratio of IF bandwidth to bit rate increased. Further, bi-phase-level/FM performed slightly better than non-return-to-zero-level (NRZ-L)/FM with an ac coupled RF signal generator and IF bandwidths much wider than the bit rate.

      Hicks, William T.; L-3 Communications (International Foundation for Telemetering, 2002-10)
      Simplification of the analog front end of a signal conditioning circuit can be accomplished by over-quantizing the input signal and using DSP for gain and offset. In this case, a much higher precision A/D converter is used than required by the desired output accuracy. The excess bits are then used to allow the DSP math to give an effective gain to the signal. By a similar function, offset of over 100% can be mathematically removed as long as the input signal does not exceed the A/D input voltage range.

      Xingyu, Luo; Qishan, Zhang; Beijing University of Aeronautics and Astronautics (International Foundation for Telemetering, 2002-10)
      It is need to design acquisition and tracking for code loop and carrier loop to detect the high dynamic Global Position System (GPS) signal. Acquiring signal quickly and shortening acquisition time in the cold case are key technology of a high dynamic GPS receiver. Moreover, fast acquisition of C/A code is the base of code tracking and carrier acquisition and tracking. This paper describes elements and implementation of a new parallel-sequential search Algorithm to acquire C/A code of the high dynamic GPS signal. And combined with a 12-channel correlator named GP2021 produced by GEC Co., the arithmetic implementation to acquire C/A code of the high dynamic GPS signal used sequential search based on DSP technology is also given.
    • Performance of a Bluetooth Based Structural Health Monitoring Telemetry Network

      Kosbar, Kurt; Uchil, Vilas; University of Missouri (International Foundation for Telemetering, 2002-10)
      The Bluetooth standard is intended to provide short-range (10-100 meter) wireless connectivity between mobile and desktop devices. It was developed as a replacement for short cables, and has the ability to form ad-hoc networks. A large inter-connection of piconets can be arranged to form a scatternet for data collection in a Bluetooth based structural health monitoring Telemetry network. The Bluetooth protocol architecture supports the formation of a daisy chain network. However Bluetooth technology was not intended for long daisy chain networks. In this work, we propose to evaluate the throughput and latency for data transmission in a long daisy chained Bluetooth based telemetry network.

      Borah, Deva K.; Horan, Stephen; New Mexico State University (International Foundation for Telemetering, 2002-10)
      This paper investigates the spectral properties and the bit error rate (BER) performance of enhanced FQPSK (EFQPSK) and constrained envelope modulation (CEM) techniques. Both the techniques are found to provide good spectral efficiencies. The EFQPSK signals are found to generate spectral lines for unbalanced data. An analytical spectral study for the spectral lines is presented. While the performance of CEM techniques has been presented in [6] for an ideal nonlinear amplifier, we present results for more realistic amplifiers with AM/AM and AM/PM effects. It is shown that such an amplifier generates spectral regrowth and a predistorter is required to reduce the adverse effects. A BER performance study with/without channel coding is also presented for the two techniques.

      Meyer, Steven J.; Kujiraoka, Scott R.; Naval Air Warfare Center Weapons Division (International Foundation for Telemetering, 2002-10)
      The Joint Advanced Missile Instrumentation (JAMI) program is integrating Global Positioning System (GPS) technology into missile telemetry systems. The weakest link appears to be the GPS antenna. The antenna on a missile is required to be flush mounted for aerodynamic reasons. Due to the missile’s tendency to roll, the antenna needs to be a multi-element omnidirectional antenna array. Therefore an antenna used on missiles is a wrap-around antenna since it will meet the flush mount and rolling requirements by giving omnidirectional coverage. JAMI has used readily available techniques for designing wrap-around telemetry antennas to develop a GPS wrap-around antenna and has discovered a major problem. The Phase Center of a wrap-around antenna tends to be a surface, not a point, and not necessarily at the centerline of the missile body. GPS measurements have been conducted to determine the Phase Center of the antenna. When the Phase Center is large, the GPS receiver perceives it as multipath and integer ambiguities cannot be resolved. This paper addresses the problems that have been uncovered and outlines the steps that are planned to resolve them.

      Starkey, Ryan P.; Lewis, Mark J.; Jones, Charles H.; University of Maryland; Edwards Air Force Base (International Foundation for Telemetering, 2002-10)
      Problems associated with telemetry blackout caused by the plasma sheath surrounding a hypersonic vehicle are addressed. In particular, the critical nature of overcoming this limitation for test and evaluation purposes is detailed. Since the telemetry blackout causes great concern for atmospheric cruise vehicles, ballistic missiles, and reentry vehicles, there have been many proposed approaches to solving the problem. This paper overviews aerodynamic design methodologies, for which the required technologies are only now being realized, which may allow for uninterrupted transmission through a plasma sheath. The severity of the signal attenuation is dependent on vehicle configuration, trajectory, flightpath, and mission.

      Grebe, David L.; Apogee Labs, Inc. (International Foundation for Telemetering, 2002-10)
      The advent of COTS based network-centric data systems brings a whole new vocabulary into the realm of instrumentation. The Communications and computer industries have developed networks to a high level and they continue to evolve. One of the basic techniques that has proven itself useful with this technology is the use of a “layered architecture.” This paper is an attempt to discuss the basic ideas behind this concept and to give some understanding of the vocabulary that has grown up with it.

      Jensen, Michael A.; Jones, Charles H.; Brigham Young University; Edwards Air Force Base (International Foundation for Telemetering, 2002-10)
      Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands. However, enabling operation within these two bands poses new problems in system design. This paper presents a prototype system capable of operating between 1.4 and 2.4 GHz, which supports continuous phase modulation (CPM) waveforms such as pulse code modulation (PCM), frequency modulation (FM), and shaped offset quadrature phase shift keying (SOQPSK). The system architecture is detailed, and the prototype performance is discussed.
    • QAM Multi-path Characterization Due to Ocean Scattering

      Swanson, Richard; Dimsdle, Jeff; Petersen, Tom; Pasquale, Regina; Bracht, Roger; Honeywell Federal Manufacturing & Technologies; Los Alamos National Laboratory (International Foundation for Telemetering, 2002-10)
      A series of RF channel flight characterization tests were recently run to benchmark multi-path performance of high-speed quadrature amplitude modulation (QAM) over the ocean surface. The modulation format was differential-phase/absolute-amplitude two level polar 16 QAM. The bit rate was 100 Megabits per second with a symbol period of 40nS. An aircraft radiated the test signal at 5 different altitudes. It made two inward flights, on two different days, at each altitude with vertical and horizontal polarization, respectively. Receivers, using circular antenna polarization, were in two different locations. Analysis of the resulting data shows flat fading and frequency selective fading effects.